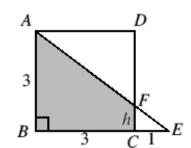


The diagram shows a square ABCD and a right-angled triangle ABE. The length of BC is 3. The length of BEis 4.

What is the area of the shaded region?

- A $5\frac{1}{4}$ B $5\frac{3}{8}$ C $5\frac{1}{2}$ D $5\frac{5}{8}$
- E $5\frac{3}{4}$



1676

©UKMT

6. D Let F be the point of intersection of the lines AE and CD. Let the length of CF be h. Then, using similar triangles, $\frac{CF}{CE} = \frac{BA}{BE}$, so $\frac{h}{1} = \frac{3}{4}$ giving $h = \frac{3}{4}$. The shaded region ABCF is a trapezium, so has area $\frac{1}{2}\left(3 + \frac{3}{4}\right) \times 3 = \frac{45}{8}$ which is $5\frac{5}{8}$.

