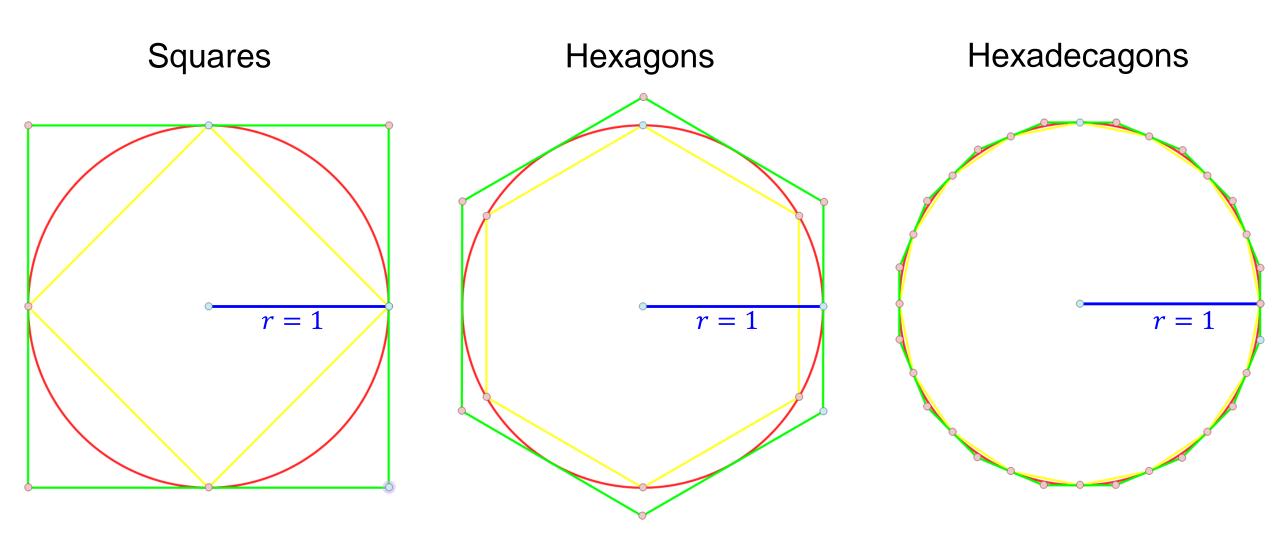
Use the yellow and green shapes below to find upper and lower bounds for π , refining your accuracy each time.



How about a general formula for *n* sides?

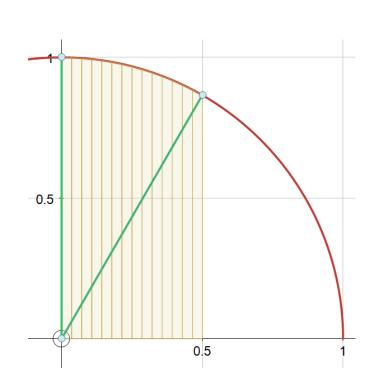
Application of Binomial Expansion

1.c

- a) Given $f(x) = \sqrt{1 x^2}$, write down the first four terms of the binomial expansion of f(x).
- b) Integrate your binomial expansion between the limits 0 and 1, and then multiply this by four.
- c) Sketch the graph of $x^2 + y^2 = 1$

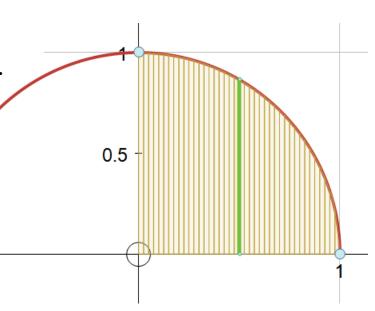
2.

- a) Integrate your binomial expansion between the limits 0 and $\frac{1}{2}$.
- b) Find the area of the triangle with vertices at the origin, $(\frac{1}{2}, 0)$ and $(\frac{1}{2}, f(\frac{1}{2}))$.
- c) Find the angle between the positive y axis and the line joining the origin to $f\left(\frac{1}{2}\right)$.
- d) Hence find a new approximation for the value that you found in question 1.
- e) Compare and contrast.
- 3. Explore more at https://www.youtube.com/watch?v=gMlf1ELvRzc.



We're gonna need a quicker method

- 1.
- a) Rearrange $x^2 + y^2 = 1$ to make y the subject.
- b) Write down the first four terms of the binomial expansion for your equation for y above.
- c) Integrate your binomial expansion between the limits 0 and 1, and then multiply this by four.
- d) Compare the accuracy of your result with the actual value.
- 2.
- a) Integrate your binomial expansion between the limits 0 and $\frac{1}{2}$.
- b) Find the angle between the positive y axis and the line joining the origin to $f\left(\frac{1}{2}\right)$
- c) Find the area of the triangle with vertices at the origin, $x = \frac{1}{2}$ and $f(\frac{1}{2})$.
- d) Hence find a new approximation for the value that you found in question 1
- e) Compare and contrast.
- 3. Explore more at https://www.youtube.com/watch?v=gMlf1ELvRzc.



We're gonna need a quicker method

Use the substitution $x = sin\theta$, to find

$$\int_0^1 \sqrt{1-x^2} \, dx$$

Why can't we just use this result to find the exact value of π ?

