D1 Revision Sheet

Sorts
Bubble Sort
1. If only one number, Stop. 
2. Make one pass down the list comparing pairs of numbers and swapping if necessary. 
3. If no swaps occurred, Stop. Otherwise repeat step 2. 
Shuttle sort
1. Compare 1st & 2nd numbers, swap if necessary.
2. Compare 2nd and 3rd numbers, swap if necessary, if swapped check 1st and 2nd 
3. Compare 3 and 4th numbers, swap, check 2nd & 3rd, 1st & 2nd etc. 
First Fit Algorithm
Place each object in turn in the first available space in which it will fit. 

Graphs and Networks

Simple Graph – one without loops and multiple arcs. 
Complete Graph – one where each node is connected by precisely one arc to every other node.
Bipartite graph – one where there are 2 sets of nodes and arcs only join nodes from different sets.
Trail or Route – A sequence of arcs, whereby the end of one arc is the start of the next.
Path – A trail with the restriction that no arc is passed more than once. 
Closed Trail – one where the start and finish node is the same. 
Cycle – a closed trail where only the first and last nodes are the same, therefore no arc can be used twice. 
Order – the order of a node is the no. of arcs meeting at it. 
Connected Graph – one where any two nodes are connected by a path. 
Eulerian graph – a connected graph where every node has even order, thus creating a closed trail using every arc precisely once. 
Semi-Eulerian graph – a connected graph where exactly 2 nodes have odd order, thus creating a non closed trail using every arc precisely once. 
Planar Graph – can be drawn with no lines crossing. 
Euler’s relationship – Connected graphs – R+N=A+2 R=regions, N=nodes and A=arcs. 
Tree – a graph with no cycles.

Minimum connector problems
Spanning trees – one which connects all the nodes of a graph. For n nodes the tree will have n-1 arcs. 
Prim‘s Algorithm – To find the minimum spanning tree / minimum connector.

1. Select any node to be start. 
2. Consider arcs outside the tree, and add one with minimum weight, or one of the minimum if multiple options. 
3. Repeat step 2 until the tree contains every node of graph. 

Kruskal’s Algorithm – To find the minimum spanning tree for a connected graph with n nodes. 
1. Choose arc of least weight. 
2. Chose arc of least weight from remaining, providing it doesn’t form a cycle. 
3. Repeat step 2 until n-I arcs have been chosen. 

Finding the shortest path
Dijkstra ‘s Algorithm – finds shortest path through network.

1. Label start node with zero. 
2. Consider the nodes connected to the first and write in minimum temporary values. 
3. Choose the node with least possible temporary weight, and make permanent, labelling 1 etc. 
4. Repeat 2 & 3 until destination node has label. 
5. Go backwards through network, retracing path of shortest length from start 
node to destination. 

Route Inspection 
Chinese Postman algorithm – For finding least weight closed trail containing every arc. 
1. Find all nodes of odd order. 
2. For each pair of odd nodes find connecting path of mm weight. 
3. Pair up odd nodes so that the sum of connecting paths in mm. 
4. In original graph duplicate the mm weight paths from 3. 
5. Find a trail containing every arc once for the new Eulerihn graph. 
Travelling Salesperson Problem – finding a tour visiting every node of a network. 

A Hamilton cycle – a tour containing every node precisely once. 
Nearest Neighbour algorithm – To find a Hamilton cycle. 
1. Choose any starting node. 
2. Consider the arcs joining previous node to new nodes. Pick the arc with mm weight, and choose this with its end node to join to the cycle. 
3. Repeat step 2 until all nodes have been chosen. 
4. Then add the arc which joins the last chosen node to the first. 

Lower Bound Algorithm – To find shortest possible route. 

1. Choose a node, x, find the total of two smallest weights attached to x. 
2. Consider the network obtained by ignoring x and its arcs, then find weight of minimum connector without x. 
3. Sum of two totals gives lower bound. 

Tour improvement Algorithm – Let nodes of Hamilton be v1, v2 etc. And let vn+ 1=v 

1. Let i=1 
2. If d(vi, vi+2) + d(vi+1, vi+3) < d(vi, vi+1) + d(vi+2 + vi+3) Then swap vi+1 and vi+2. 
3. Replace i by i+1 
4. If 1 ≤ n then go back to step 2. 

Simplex Algorithm – Used to solve a linear program where a graph is not appropriate. 
1. Formulate the maximising problem, using slack variables as necessary. 
2. Ensure that all elements in the last column are positive, except maybe top. 
3. Select any column, except the last, whose top value is negative. 
4. Call the numbers in this column a0, a1 and the ones in the last column l0, l1 etc. In selected column, chose positive element for ai for which li/ai is least, make ai the pivot. 
5. Divide ith row by ai. 
6. Combine appropriate multiples of ith row with all others in order to reduce to zero all other elements in column of pivot. 
7. If all top elements (except poss last) are positive, then max has been reached, if not return to 3. 
8. The last column contains the values of the objective function and non-zero variables. 

Ben Walker 

