Dimensions of Quantities

Quantity	Formula	Dimensions	Units
Speed	$v=d / t$	$[v]=L T^{-1}$	$\mathrm{~ms}^{-1}$
Volume of sphere	$4 / 3 \pi r^{3}$	$[V]=L^{3}$	$\mathrm{~m}^{3}$
Angle	$\theta=($ arc length)/radius	1	Radians
Acceleration			
Force			
Work			
Density			
Pressure			
G.P.E.			
Power			
Kinetic Energy			

Dimensions of Quantities - Answers

Quantity	Formula	Dimensions	Units
Speed	$v=d / t$	$[v]=L T^{-1}$	ms^{-1}
Volume of sphere	$4 / 3 \pi r^{3}$	$[V]=L^{3}$	m^{3}
Angle	$\theta=($ arc length $) /$ radius	1	Radians
Acceleration	$a=\frac{v-u}{t}$	$[a]=L T^{-2}$	ms^{-2}
Force	$F=m a$	$[F]=M L T{ }^{-2}$	Newtons
Work done	work done $=$ Fs	$\begin{gathered} {[\text { work done }]=} \\ M L T^{-2} L=M L^{2} T^{-2} \end{gathered}$	Joules
Density	$\text { Density }=\frac{\text { mass }}{\text { volume }}$	$[$ Density $]=M L^{-3}$	$\mathrm{Kg} / \mathrm{m}^{3}$
Pressure	$\text { Pressure }=\frac{\text { Force }}{\text { area }}$	$\begin{gathered} {[\text { Pressure }]=} \\ M L T^{-2} L^{-2}=M L^{-1} T^{-2} \end{gathered}$	Pa
G.P.E.	$G P E=m g h$	$[G P E]=M L^{2} T^{-2}$	Joules
Kinetic Energy	$K E=\frac{1}{2} m v^{2}$	$[K E]=M\left(L T^{-1}\right)^{2}$	Joules
Power	$P=\frac{F s}{t}=F v$	$[P]=M L T^{-1}$	Watts

*Watt ain't no country I ever heard of, they speak English in Watt?

