Building Up to... A Harder Simultaneous Equations Question

Rewrite...

a) $2^3 \times 2^4 =$ b) $(2^3)^4 =$

What number does the **#** represent?

c)
$$2^{2x} = (2^x)^{\#}$$

Solve...

d) $2^x = 32$ e) $2^{2x} = 64$

Now solve these simultaneous equations...

f) x - 3y = 4x + 3y = 16

Factorise (write as difference of two squares)...

g)
$$x^2 - 9y^2$$

Solve these simultaneous equations...

h)
$$x - 2y = 3$$

 $x^2 - 4y^2 = 33$

Now try solving these simultaneous equations...

i) $3^x - 2(3^y) = 3$ $3^{2x} - 4(3^{2y}) = 45$

And now here's an A level version of this question. See how far you can get...

Solve the simultaneous equations $e^{x} - 2e^{y} = 3$ $e^{2x} - 4e^{2y} = 33$. Give your answer in an exact form.

More Practice... A Harder Simultaneous Equations Question

Rewrite...

a) $2^3 \times 2^7 =$ b) $2^3 \times 2^4 \times 2^5 =$ c) $(2^3)^5 =$ d) $((2^3)^4)^5 =$ e) $\frac{2^6}{2^2} =$ f) $\frac{2^{10}}{2^2} =$ g) $\frac{(2^3)^4 \times 2^5}{2^2} =$

What number does the # represent?

a) $2^{3x} = (2^x)^{\#}$ b) $2^{\frac{x}{2}} = (2^x)^{\#}$ c) $3^{2x} = (3^x)^{\#}$ d) $3^{\frac{2x}{3}} = (3^x)^{\#}$

Solve...

- a) $2^x = 8$ b) $3^x = 81$ c) $3^{2x} = 81$ d) $2^{3x} = 64$
- Now solve these simultaneous equations...
- a) 2x 5y = 5 2x + 5y = 35b) 2x - 5y = 10 x + 5y = 20c) 2x + 3y = 21 5x + 4y = 42d) 3x + 7y = -312x - 3y = 10

Factorise (write as difference of two squares)...

a) $x^2 - 16y^2$ b) $9x^2 - y^2$ c) $4x^2 - 25y^2$ d) $100x^2y^2 - 49x^4$ Solve these simultaneous equations ...

a) x - 2y = 3 $x^2 - 4y^2 = 33$ b) x - 2y = 2 $x^2 - 4y^2 = 28$ c) x - 3y = 1 $x^2 - 9y^2 = 19$ d) x - 3y = 5 $x^2 - 9y^2 = 15$

Now try solving these simultaneous equations...

a) $3^{x} - 2(3^{y}) = 9$ $3^{2x} - 4(3^{2y}) = 405$ b) $2^{x} - 2(2^{y}) = 4$ $2^{2x} - 4(2^{2y}) = 48$ c) $2^{x} - 2(2^{y}) = 8$ $2^{2x} - 4(2^{2y}) = 192$ d) $3^{x} - 2(3^{y}) = \sqrt{3} - 2$ e) $3^{x} - 2(3^{y}) = -\sqrt{3}$ $3^{2x} - 4(3^{2y}) = -9$ f) $3^{x} - 2(3^{y}) = 3 - 2\sqrt{3}$ $3^{2x} - 4(3^{2y}) = -3$

Extension task. What's going on here?...

$$\begin{aligned} x - 2y &= 0\\ x^2 - 4y^2 &= 0 \end{aligned}$$

So we're nearly there...

You just did...

$$3^{x} - 2(3^{y}) = 9$$

$$3^{2x} - 4(3^{2y}) = 405$$

So how about?...

$$2.718^{x} - 2(2.718^{y}) = 3$$
$$2.718^{2x} - 4(2.718^{2y}) = 33$$

Or perhaps?...

$$e^{x} - 2(e^{y}) = 3$$

 $e^{2x} - 4(e^{2y}) = 33$

Building Up to... A Harder Simultaneous Equations Answers

Rewrite...

a) $2^3 \times 2^4 = 2^7$ b) $(2^3)^4 = 2^{12}$

What number does the **#** represent?

c)
$$2^{2x} = (2^x)^2$$

Solve...

d) $2^x = 32, x = 5$ e) $2^{2x} = 64, x = 3$

Now solve these simultaneous equations...

f) x - 3y = 4x + 3y = 16

Factorise (write as difference of two squares)...

g) $x^2 - 9y^2 = (x + 3y)(x - 3y)$

Solve these simultaneous equations...

h)
$$x - 2y = 3$$

 $x^2 - 4y^2 = 33$

Now try solving these simultaneous equations...

i) $3^x - 2(3^y) = 3$ $3^{2x} - 4(3^{2y}) = 45$

And now here's an A level version of this question. See how far you can get...

Solve the simultaneous equations $e^{x} - 2e^{y} = 3$ $e^{2x} - 4e^{2y} = 33$. Give your answer in an exact form.

More Practice... A Harder Simultaneous Equations Answers

Rewrite...

a) $2^3 \times 2^7 = 2^{10}$ e) $\frac{2^6}{2^2} = 2^4$ b) $2^3 \times 2^4 \times 2^5 = 2^{12}$ f) $\frac{2^{10}}{2^2} = 2^8$ c) $(2^3)^5 = 2^{15}$ g) $\frac{(2^3)^4 \times 2^5}{2^2} = 2^{15}$ d) $((2^3)^4)^5 = 2^{60}$

What number does the # represent?

a) $2^{3x} = (2^x)^3$ c) $3^{2x} = (3^x)^2$ d) $3^{\frac{2x}{3}} = (3^x)^{\frac{2}{3}}$ b) $2^{\frac{x}{2}} = (2^x)^{\frac{1}{2}}$

Solve...

a) $2^x = 8, x = 3$ c) $3^{2x} = 81, x = 2$ b) $3^x = 81, x = 4$ d) $2^{3x} = 64, x = 2$

Now solve these simultaneous equations...

a) 2x - 5y = 5 x = 10, y = 3c) 2x + 3y = 21 x = 6, y = 35x + 4y = 422x + 5y = 35b) 2x - 5y = 10 x = 10, y = 2d) 3x + 7y = -31 x = -1, y = -4x + 5v = 202x - 3y = 10

Factorise (write as difference of two squares)...

- a) $x^2 16y^2 = (x + 4y)(x 4y)$ c) $4x^2 25y^2 = (2x + 5y)(2x 5y)$ b) $9x^2 - y^2 = (3x + y)(3x - y)$ d) $100x^2y^2 - 49x^4 = (10xy + 7x^2)(10xy - 7x^2)$

Solve these simultaneous equations ...

a)
$$x - 2y = 3$$
 $x = 7, y = 2$
 $x^2 - 4y^2 = 33$
b) $x - 2y = 2$ $x = 8, y = 3$
 $x^2 - 4y^2 = 28$
c) $x - 3y = 1$ $x = 10, y = 3$
 $x^2 - 9y^2 = 19$
d) $x - 3y = 5$ $x = 4, y = -\frac{1}{3}$
 $x^2 - 9y^2 = 15$

Now try solving these simultaneous equations...

a)
$$3^{x} - 2(3^{y}) = 9, x = 3, y = 2$$

 $3^{2x} - 4(3^{2y}) = 405$

b)
$$2^{x} - 2(2^{y}) = 4, x = 3, y = 1$$

 $2^{2x} - 4(2^{2y}) = 48$

c)
$$2^{x} - 2(2^{y}) = 8, x = 4, y = 2$$

 $2^{2x} - 4(2^{2y}) = 192$

d)
$$3^{x} - 2(3^{y}) = \sqrt{3} - 2, x = \frac{1}{2}, y = 0$$

 $3^{2x} - 4(3^{2y}) = -1$
e) $3^{x} - 2(3^{y}) = -\sqrt{3}, x = \frac{1}{2}, y = \frac{1}{2}$
 $3^{2x} - 4(3^{2y}) = -9$
f) $3^{x} - 2(3^{y}) = 3 - 2\sqrt{3}, x = 1, y = \frac{1}{2}$
 $3^{2x} - 4(3^{2y}) = -3$

Extension task. What's going on here?...

$$\begin{aligned} x - 2y &= 0\\ x^2 - 4y^2 &= 0 \end{aligned}$$