Core 1 Basic Algebra Answers – Mainly Quadratics

$(x-2)^2 + 5$	B1 B1	2	p = 2 $q = 5$
Minimum point (2, 5) or $x = 2, y = 5$	B2√	2	B1 for each coordinate correct or ft Alt method M1, A1 sketch, differentiation
$(m+4)^2 - m^2 + 8m + 16$	B1		Condone $4m + 4m$
$(m+4)^{2} - 4ac = (m+4)^{2} - 4(4m+1) = 0$	M1		$b^2 - 4ac$ (attempted and involving <i>m</i> 's
$m^2 + 8m + 16 - 16m - 4 = 0$			and no x's) or $b^2 - 4ac = 0$ stated
$\Rightarrow m^2 - 8m + 12 = 0$	A1	3	AG (be convinced – all working correct- = 0 appearing more than right at the end)
(m-2)(m-6) = 0	M1		Attempt at factors or quadratic formula
m = 2, $m = 6$	Al	2	SC B1 for 2 or 6 only without working
Total		5	
$(x+4)^2$	B1		p = 4
+3	B1	2	q = 3
	M1		Or discriminant = $64 - 76$
No real square root of -3	A1	2	Disc < 0 so no real roots (all correct figs)
19 Minimum (4 2)	D1 A		A diain and (an arrest)
			ft their $-p$ and q (or correct)
	BI		Parabola (vertex roughly as shown)
-4	B1	3	Crossing at $y = 19$ marked or $(0, 19)$ stated
Translation (and no additional transf [*] n)	E1		Not shift, move, transformation, etc
	M1		One component correct eg 3 units up
through 3	A1	3	All correct – if not vector – must say 4
		10	units in negative <i>x</i> - direction, to left etc
10(4)		10	Ι
$A(k+1)^2 - A(2k^2 - 7)$	M1		" $b^2 - 4ac$ " in terms of k (either term
(n+1) = (2n+1)	1111		correct)
	A1		$b^2 - 4ac = 0$ correct quadratic equation in k
$4k^2 - 8k - 32 = 0 \text{ or } k^2 - 2k - 8 = 0$	1		
$4(k+1)^{2} - 4(2k^{2} - 7)$ $4k^{2} - 8k - 32 = 0 \text{ or } k^{2} - 2k - 8 = 0$ (k-4)(k+2) = 0 k = -2 , k = 4	m1		Attempt to factorise, solve equation
	Minimum point (2, 5) or $x = 2, y = 5$ $ \begin{array}{c} (m+4)^2 = m^2 + 8m + 16 \\ b^2 - 4ac = (m+4)^2 - 4(4m+1) = 0 \\ m^2 + 8m + 16 - 16m - 4 = 0 \\ \Rightarrow m^2 - 8m + 12 = 0 \\ (m-2)(m-6) = 0 \\ m = 2, m = 6 \end{array} $ Total $ \begin{array}{c} (x+4)^2 \\ +3 \\ (x+4)^2 \\ +3 \\ (x+4)^2 = -3 \text{ or "their"} (x+p)^2 = -q \\ \text{No real square root of } -3 \\ \end{array} $ Translation (and no additional transf n) through $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$ Total	B1 Minimum point (2, 5) or $x = 2, y = 5$ $(m + 4)^2 = m^2 + 8m + 16$ $b^2 - 4ac = (m + 4)^2 - 4(4m + 1) = 0$ $m^2 + 8m + 16 - 16m - 4 = 0$ $\Rightarrow m^2 - 8m + 12 = 0$ (m - 2)(m - 6) = 0 m = 2, m = 6 M1 $(x + 4)^2$ +3 $(x + 4)^2 = -3$ or "their" $(x + p)^2 = -q$ No real square root of -3 $(x + 4)^2 = -3$ or "their" $(x + p)^2 = -q$ No real square root of -3 $(x + 4)^2 = -3$ or "their" $(x + p)^2 = -q$ No real square root of -3 $mathbf{Minimum}(-4, 3)$ graph B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

'(a)	$b^2 - 4ac = 144 - 4(k+1)(k-4)$	M1		Clear attempt at $b^2 - 4ac$ Condone slip in one term of expression
	Real roots when $b^2 - 4ac \ge 0$	В1		Not just a statement, must involve k
	$36 - (k^2 - 3k - 4) \ge 0$ $\implies k^2 - 3k - 40 \le 0$	A1	3	AG (watch signs carefully)
(b)	(k-8)(k+5) Critical points 8 and -5	M1 A1		Factors attempt or formula
	Sketch or sign diagram correct , must have 8 and -5 $-5 \le k \le 8$	M1 A1	4	+ve -ve +ve
	A0 for $-5 < k < 8$ or two separate inequalities unless word AND used			
	Total		7	

3(a)(i)	$(x+5)^2$	B1		p = 5
	-6	B1	2	q = -6
(ii)	$x_{\text{vertex}} = -5 \text{ (or their } -p \text{)}$	B1√		may differentiate but must have $x = -5$
	$y_{\text{vertex}} = -6 \text{ (or their } q)$	B1√	2	and $y = -6$. Vertex $(-5, -6)$
(iii)	<i>x</i> = - 5	B1	1	
(iv)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\begin{bmatrix} -5\\ -6 \end{bmatrix}$ (or 5 left, 6 down)	M1 A1	3	either component correct M1, A1 independent of E mark
(b)	$x + 11 = x^2 + 10x + 19$			quadratic with all terms on one side of equation
	$\Rightarrow x^2 + 9x + 8 = 0$ or $y^2 - 13y + 30 = 0$	M1		
	(x+8)(x+1)=0 or $(y-3)(y-10)=0$	m1		attempt at formula (1 slip) or to factorise
	$\begin{array}{c} x = -1 \\ y = 10 \end{array}$ or $\begin{array}{c} x = -8 \\ y = 3 \end{array}$	A1		both x values correct
	y = 10 $y = 3$	A1	4	both y values correct and linked
				SC (-1,10) B2, (-8,3) B2 no working
	Total		12	

7(a)	$b^2 - 4ac = 4 - 4(k - 1)(2k - 3)$	M1		(or seen in formula) condone one slip
	Real roots when $b^2 - 4ac \ge 0$	E1		must involve $f(k) \ge 0$ (usually M1 must be earned)
	$4-4(2k^2-5k+3) \ge 0$			
	$\Rightarrow -2k^2 + 5k - 3 + 1 \ge 0$			at least one step of working justifying $\leqslant 0$
	$\Rightarrow 2k^2 - 5k + 2 \leq 0$	A1	3	AG
(b)(i)	(2k-1)(k-2)	B1	1	
(ii)	(Critical values) $\frac{1}{2}$ and 2	В1√		ft their factors or correct values seen on diagram, sketch or inequality or stated
	+ - + $\frac{1}{2}$ 2	M1		use of sketch / sign diagram
	$\Rightarrow 0.5 \leq k \leq 2$	A1	3	M1A0 for $0.5 < k < 2$ or $k \ge 0.5$, $k \le 2$
	Tota	al	7	