Core 1 Basic Algebra Answers - Mainly Quadratics

$\mathbf{3 (a) (i)}$	$(x-2)^{2}$ +5	B1 B 1	2	$p=2$ $q=5$
(ii)	Minimum point $(2,5)$ or $x=2, y=5$	$\mathrm{~B} 2 \checkmark$	2	B1 for each coordinate correct or ft Alt method M1, A1 sketch, differentiation

(ii) $\left\lvert\, \begin{aligned} & 4(k+1)^{2}-4\left(2 k^{2}-7\right) \\ & 4 k^{2}-8 k-32=0 \text { or } k^{2}-2 k-8=0 \\ & (k-4)(k+2)=0 \\ & k=-2, k=4\end{aligned}\right.$

M1		$" b^{2}-4 a c "$ in terms of k (either term correct) $b^{2}-4 a c=0$ correct quadratic equation in k A1
m1		Attempt to factorise, solve equation A1
4	SC B1, B1 for $-2,4$ (if M0 scored)	

7(a)	$b^{2}-4 a c=144-4(k+1)(k-4)$	M1		Clear attempt at $b^{2}-4 a c$ Condone slip in one term of expression
	Real roots when $b^{2}-4 a c \geqslant 0$ $\begin{aligned} 36-\left(k^{2}-3 k-4\right) & \geqslant 0 \\ \Rightarrow k^{2}-3 k-40 & \leqslant 0 \end{aligned}$	B1 A1	3	Not just a statement, must involve k AG (watch signs carefully)
(b)	$(k-8)(k+5)$ Critical points 8 and -5	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Factors attempt or formula
	Sketch or sign diagram correct, must have 8 and -5 $-5 \leqslant k \leqslant 8$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	+ ve - ve +ve
	A0 for $-5<k<8$ or two separate inequalities unless word AND used			
	Total		7	

3(a)(i)	$(x+5)^{2}$	B1		$p=5$
	-6	B1	2	$q=-6$
(ii)	$x_{\text {vertex }}=-5($ or their $-p)$	B1 \checkmark		may differentiate but must have $x=-5$
	$y_{\text {vertex }}=-6($ or their $q)$	B1 \checkmark	2	and $y=-6$. Vertex $(-5,-6)$
(iii)	$x=-5$	B1	1	
(iv)	Translation (not shift, move etc)	E1		and NO other transformation stated
	through $\left[\begin{array}{l}-5 \\ -6\end{array}\right]$ (or 5 left, 6 down)	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	either component correct M1, A1 independent of E mark
(b)	$x+11=x^{2}+10 x+19$			quadratic with all terms on one side of equation
	$\Rightarrow x^{2}+9 x+8=0$ or $y^{2}-13 y+30=0$	M1		
	$(x+8)(x+1)=0 \text { or }(y-3)(y-10)=0$	m1		attempt at formula (1 slip) or to factorise
	$\left.\left.\begin{array}{l} x=-1 \\ y=10 \end{array}\right\} \text { or } \begin{array}{l} x=-8 \\ y=3 \end{array}\right\}$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	4	both x values correct both y values correct and linked
				SC $(-1,10) \mathrm{B} 2,(-8,3)$ B2 no working
	Total		12	

