Core 1 Differentiation Answers

7(a)(i)	dV 25 23 25	M1		One term correct unsimplified
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 2t^5 - 8t^3 + 6t$	A1		Further term correct unsimplified
		A1	3	All correct unsimplified (no + c etc)
(ii)	d^2V 104 2442 + 6	M1		One term FT correct unsimplified
	$\frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = 10t^4 - 24t^2 + 6$	A1	2	CSO. All correct simplified
(b)	Substitute $t = 2$ into their $\frac{dV}{dt}$ (= 64 - 64 + 12) = 12	M1		
(~)	$\frac{1}{dt}$			
	(=64-64+12)=12	A1	2	CSO . Rate of change of volume is
				$12\text{m}^3 \text{ s}^{-1}$
(c)(i)	dV			Or putting their dV
(0)(1)	$t=1 \Rightarrow \frac{1}{dt} = 2-8+6$	M1		Or putting their $\frac{dV}{dt} = 0$
	$t = 1 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}t} = 2 - 8 + 6$ $= 0 \Rightarrow \text{Stationary value}$	A1	2	CSO . Shown to = 0 AND statement
	, 2111121111, 111111			(If solving equation must obtain $t = 1$)
(II)	$\mathrm{d}^2 V$	M1		Sub $t = 1$ into their second derivative or
(11)	$t = 1 \Rightarrow \frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = -8$	1,111		equivalent full test.
	Maximum value	A1√	2	Ft if their test implies minimum
	Total		11	

3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -10x^4$	M1 A1	2	kx^4 condone extra term Correct derivative unsimplified
(b)	When $x = 1$, gradient = -10	B1√		FT their gradient when $x = 1$
	Tangent is $y-5 = -10(x-1)$ or $y + 10x = 15$ etc	M1 A1	2	Attempt at y & tangent (not normal) CSO Any correct form
(c)	When $x = -2$ $\frac{dy}{dx} = -160$ (or < 0)	B1√	3	Value of their $\frac{dy}{dx}$ when $x = -2$
_	$(\frac{\mathrm{d}y}{\mathrm{d}x} < 0 \text{ hence})$ y is decreasing	E1√	2	ft Increasing if their $\frac{dy}{dx} > 0$
	Total		7	

5(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 20x + 28$	M1 A1 A1	3	One term correct Another term correct All correct (no + c etc)
(ii)	Their $\frac{dy}{dx} = 0$ for stationary point $(x-2)(3x-14) = 0$ $\Rightarrow x = 2$ or $x = \frac{14}{3}$	M1 m1 A1 A1	4	Or realising condition for stationary pt Attempt to solve using formula/ factorise Award M1, A1 for verification that $x = 2 \Rightarrow \frac{dy}{dx} = 0 \text{ then may earn m1 later}$

$\frac{dV}{dx} = 18 - 2x^{2}$ Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this implies a stationary point if verifying $\frac{d^{2}V}{dx^{2}} = -4x$ $(= -12)$ $\frac{d^{2}V}{dx^{2}} < 0$ at stationary point \Rightarrow maximum			solving
Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this implies a stationary point if verifying	A1 M1 A1	2	All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$ CSO Condone $x = \pm 3$ or $x = 3$ if solving
Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this implies a stationary point if verifying	A1 M1 A1	2	All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$ CSO Condone $x = \pm 3$ or $x = 3$ if solving
Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this	A1 M1		All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$ CSO Condone $x = \pm 3$ or $x = 3$ if
Sub $x = 3$ into their $\frac{dV}{dx}$	A1 M1		All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$
	A1	2	All correct unsimplified $18 - 6x^2/3$
$\frac{\mathrm{d}V}{\mathrm{d}x} = 18 - 2x^2$		2	
		1	
$V = 2x^{2}h = 18x - \frac{1}{3}$	БІ		brackets
$x = 2x^2h = -18x = 2x^3$	R1	1	AG (watch fudging) condone omission of
$h = \frac{27 - x^2}{3x}$ or $h = \frac{9}{x} - \frac{x}{3}$ etc	B1	1	Any correct form
$\Rightarrow x^2 + 3xh = 27$	A1	2	AG CSO
$2x^2 + 2xh + 4xh$ (= 54)	M1		Attempt at surface area (one slip)
	$2x^{2} + 2xh + 4xh (= 54)$ $\Rightarrow x^{2} + 3xh = 27$ $h = \frac{27 - x^{2}}{3x} \text{or} h = \frac{9}{x} - \frac{x}{3} \text{ etc}$ $V = 2x^{2}h = 18x - \frac{2x^{3}}{3}$		

4(a)(i)	$t^3 - 52t + 96$	M1		one term correct
		A1		another term correct
		A1	3	all correct (no + c etc)
(ii)	$3t^2 - 52$	M1		ft one term correct
` '		A1√	2	ft all "correct"
		1111	_	Trum Contect
	dv			dv
(b)	$\frac{dy}{dt} = 8 - 104 + 96$	M1		substitute $t = 2$ into their $\frac{dy}{dt}$
	$= 0 \implies$ stationary value	A1		CSO; shown = $0 + \text{statement}$
	Substitute $t = 2$ into $\frac{d^2 y}{dt^2}$ $(= -40)$	N/1		any appropriate test $a = a'(1)$ and $a'(2)$
	Substitute $t = 2$ into $\frac{1}{dt^2}$ $(= -40)$	M1		any appropriate test, e.g. $y'(1)$ and $y'(3)$
	12			
	$\frac{d^2 y}{dt^2} < 0 \implies \text{max value}$	A1	4	all values (if stated) must be correct
	$\mathrm{d}t^2$	711		air varies (ir stated) mast be correct
	Substitute $t = 1$ into their dy	3.61		$dy = d^2y$
(c)	Substitute $t = 1$ into their $\frac{dy}{dt}$	M1		must be their $\frac{dy}{dt}$ NOT $\frac{d^2y}{dt^2}$
				Gi Gi
	Rate of change = $45 (\text{cm s}^{-1})$	A1√	2	ft their $y'(1)$
'		1	1	1

(d)	Substitute $t = 3$ into their $\frac{dy}{dt}$	M1		interpreting their value of $\frac{dy}{dt}$
	(27-156+96=-33<0)			
	\Rightarrow decreasing when $t = 3$	E1√	2	allow increasing if their $\frac{dy}{dt} > 0$
	Total		13	