Core 1 Polynomials Answers

6(a)(i)	p(2) = 8 + 4 - 20 + 8	M1		Finding p(2) M0 long division
	$=0$, $\Rightarrow x-2$ is a factor	A1	2	Shown = 0 AND conclusion/statement about $x - 2$ being a factor
(ii)	Attempt at quadratic factor $x^{2} + 3x - 4$ $p(x) = (x - 2)(x + 4)(x - 1)$	M1 A1		or factor theorem again for 2^{nd} factor or $(x+4)$ or $(x-1)$ proved to be a factor
	p(x) - (x - 2)(x + 4)(x - 1)	A1	3	
(b)	y • • • • • •	B1		Graph through (0,8) 8 marked
		B1√		Ft "their factors" 3 roots marked on x-axis
	4 0 1 2 x	M1 A1	4	Cubic curve through their 3 points Correct including x- intercepts correct Condone max on y-axis etc or slightly
				wrong concavity at ends of graph
	Total		9	

6(a)	p(3) = 27 - 36 + 9		M1		Finding p(3) and not long division
	p(3) = 27 - 36 + 9 $p(3) = 0 \implies x - 3 \text{ is a fa}$	etor	A1	2	Shown = 0 plus a statement
	_	_			
(b)	$x(x^2 - 4x + 3)$ or $(x - 3)$ p(x) = x(x - 1)(x - 3)	$(x^2 - x)$ attempt	M1		Or $p(1) = 0 \implies x - 1$ is a factor attempt
	p(x) = x(x-1)(x-3)		A1	2	Condone $x + 0$ or $x - 0$ as factor
(c)(i)	p(2) = 8 - 16 + 6		M1		Must use p(2) and not long division
	(Remainder is) - 2		A1	2	
(ii)	Attempt to multiply out	and compare	M1		Or long division (2 terms of quotient)
	coefficients	a = -2	A1		$x^2 - 2x$
		b = -1	A1		_1
		r = -2	A1	4	Withhold final A1 for long division unless
	SC B1 for $r = -2$ if M0 s		111	· '	written as $(x-2)(x^2-2x-1)-2$
				40	
		Total		10	

1(a)(i)	p(-2) = -8 - 16 + 14 + k $p(-2) = 0 \Rightarrow -10 + k = 0 \Rightarrow k = 10$	M1 A1	2	or long division or $(x+2)(x^2-6x+5)$ AG likely withhold if $p(-2) = 0$ not seen
	Must have statement if $k=10$ substitute			
(ii)	$p(x) = (x+2)(x^2 + \dots 5)$	M1		Attempt at quadratic or second linear
	$p(x) = (x+2)(x^2 - 6x + 5)$	A1		factor $(x-1)$ or $(x-5)$ from factor theorem
	$\Rightarrow p(x) = (x+2)(x-1)(x-5)$	A1	3	Must be written as product
(b)	p(3) = 27 - 36 - 21 + k (Remainder) = $k - 30 = \underline{-20}$	M1 A1	2	long division scores M0 Condone $k-30$
(c)	10	B1		Curve thro' 10 marked on y-axis
	/ x	B1√		FT their 3 roots marked on x-axis
	$\begin{bmatrix} - \\ 2 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$	M1		Cubic shape with a max and min
		A1	4	Correct graph (roughly as on left) going beyond -2 and 5
				(condone max anywhere between $x = -2$
				and 1 and min between 1 and 5)
	Total		11	

6(a)(i)	f(1) = 1 + 4 - 5 $\Rightarrow f(1) = 0 \Rightarrow (x - 1)$ is factor	M1 A1	2	must find $f(1)$ NOT long division shown = 0 plus a statement
(ii)	Attempt at $x^2 + x + 5$ $f(x) = (x-1)(x^2 + x + 5)$	M1 A1	2	long division leading to $x^2 \pm x +$ or equating coefficients $p = 1$, $q = 5$ by inspection scores B1, B1
(iii)	(x =) 1 is real root	B1	2	p=1, q=3 by hispection scores $B1, B1$
	Consider $b^2 - 4ac$ for their $x^2 + x + 5$ $b^2 - 4ac = 1^2 - 4 \times 5 = -19 < 0$	M1		not the cubic!
	Hence no real roots (or only real root is 1)	A1	3	CSO; all values correct plus a statement