Core 1 Basic Algebra Questions - Mainly Quadratics

3 (a) (i) Express $x^{2}-4 x+9$ in the form $(x-p)^{2}+q$, where p and q are integers.
(2 marks)
(ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y=x^{2}-4 x+9$.

4 The quadratic equation $x^{2}+(m+4) x+(4 m+1)=0$, where m is a constant, has equal roots.
(a) Show that $m^{2}-8 m+12=0$.
(b) Hence find the possible values of m.

2 (a) Express $x^{2}+8 x+19$ in the form $(x+p)^{2}+q$, where p and q are integers. (2 marks)
(b) Hence, or otherwise, show that the equation $x^{2}+8 x+19=0$ has no real solutions.
(2 marks)
(c) Sketch the graph of $y=x^{2}+8 x+19$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis.
(3 marks)
(d) Describe geometrically the transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+8 x+19$.
(3 marks)
(ii) Find the values of k for which the equation

$$
x^{2}-2(k+1) x+2 k^{2}-7=0
$$

has equal roots.

7 The quadratic equation $(k+1) x^{2}+12 x+(k-4)=0$ has real roots.
(a) Show that $k^{2}-3 k-40 \leqslant 0$.
(b) Hence find the possible values of k.

3 (a) (i) Express $x^{2}+10 x+19$ in the form $(x+p)^{2}+q$, where p and q are integers.
(2 marks)
(ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y=x^{2}+10 x+19$.
(iii) Write down the equation of the line of symmetry of the curve $y=x^{2}+10 x+19$. (1 mark)
(iv) Describe geometrically the transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+10 x+19$.
(3 marks)
(b) Determine the coordinates of the points of intersection of the line $y=x+11$ and the curve $y=x^{2}+10 x+19$.

7 The quadratic equation

$$
(2 k-3) x^{2}+2 x+(k-1)=0
$$

where k is a constant, has real roots.
(a) Show that $2 k^{2}-5 k+2 \leqslant 0$.
(b) (i) Factorise $2 k^{2}-5 k+2$.
(ii) Hence, or otherwise, solve the quadratic inequality

$$
2 k^{2}-5 k+2 \leqslant 0
$$

