Core 1 Basic Algebra Questions – Mainly Quadratics

- 3 (a) (i) Express $x^2 4x + 9$ in the form $(x p)^2 + q$, where p and q are integers.
 - (ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y = x^2 4x + 9$. (2 marks)
- 4 The quadratic equation $x^2 + (m+4)x + (4m+1) = 0$, where m is a constant, has equal roots.
 - (a) Show that $m^2 8m + 12 = 0$. (3 marks)
 - (b) Hence find the possible values of m. (2 marks)
- 2 (a) Express $x^2 + 8x + 19$ in the form $(x+p)^2 + q$, where p and q are integers. (2 marks)
 - (b) Hence, or otherwise, show that the equation $x^2 + 8x + 19 = 0$ has no real solutions. (2 marks)
 - (c) Sketch the graph of $y = x^2 + 8x + 19$, stating the coordinates of the minimum point and the point where the graph crosses the y-axis. (3 marks)
 - (d) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 8x + 19$. (3 marks)
- (ii) Find the values of k for which the equation

$$x^2 - 2(k+1)x + 2k^2 - 7 = 0$$

has equal roots. (4 marks)

- 7 The quadratic equation $(k+1)x^2 + 12x + (k-4) = 0$ has real roots.
 - (a) Show that $k^2 3k 40 \le 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

- 3 (a) (i) Express $x^2 + 10x + 19$ in the form $(x+p)^2 + q$, where p and q are integers.
 - (ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y = x^2 + 10x + 19$. (2 marks)
 - (iii) Write down the equation of the line of symmetry of the curve $y = x^2 + 10x + 19$. (1 mark)
 - (iv) Describe geometrically the transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 10x + 19$.
 - (b) Determine the coordinates of the points of intersection of the line y = x + 11 and the curve $y = x^2 + 10x + 19$. (4 marks)
- 7 The quadratic equation

$$(2k-3)x^2 + 2x + (k-1) = 0$$

where k is a constant, has real roots.

(a) Show that
$$2k^2 - 5k + 2 \le 0$$
. (3 marks)

(b) (i) Factorise
$$2k^2 - 5k + 2$$
. (1 mark)

(ii) Hence, or otherwise, solve the quadratic inequality

$$2k^2 - 5k + 2 \leqslant 0 \tag{3 marks}$$