Core 1 Polynomials Questions

6 The polynomial p(x) is given by

$$p(x) = x^3 + x^2 - 10x + 8$$

- (a) (i) Using the factor theorem, show that x 2 is a factor of p(x). (2 marks)
 - (ii) Hence express p(x) as the product of three linear factors. (3 marks)
- (b) Sketch the curve with equation $y = x^3 + x^2 10x + 8$, showing the coordinates of the points where the curve cuts the axes.

(You are not required to calculate the coordinates of the stationary points.) (4 marks)

- 6 The polynomial p(x) is given by $p(x) = x^3 4x^2 + 3x$.
 - (a) Use the Factor Theorem to show that x 3 is a factor of p(x). (2 marks)
 - (b) Express p(x) as the product of three linear factors. (2 marks)
 - (c) (i) Use the Remainder Theorem to find the remainder, r, when p(x) is divided by x 2.

 (2 marks)
 - (ii) Using algebraic division, or otherwise, express p(x) in the form

$$(x-2)(x^2 + ax + b) + r$$

where a, b and r are constants.

(4 marks)

1 The polynomial p(x) is given by

$$p(x) = x^3 - 4x^2 - 7x + k$$

where k is a constant.

- (a) (i) Given that x + 2 is a factor of p(x), show that k = 10. (2 marks)
 - (ii) Express p(x) as the product of three linear factors. (3 marks)
- (b) Use the Remainder Theorem to find the remainder when p(x) is divided by x 3.

 (2 marks)
- (c) Sketch the curve with equation $y = x^3 4x^2 7x + 10$, indicating the values where the curve crosses the x-axis and the y-axis. (You are **not** required to find the coordinates of the stationary points.) (4 marks)

- 6 (a) The polynomial f(x) is given by $f(x) = x^3 + 4x 5$.
 - (i) Use the Factor Theorem to show that x 1 is a factor of f(x). (2 marks)
 - (ii) Express f(x) in the form $(x-1)(x^2+px+q)$, where p and q are integers. (2 marks)
 - (iii) Hence show that the equation f(x) = 0 has exactly one real root and state its value. (3 marks)