Core 2 Indices & Logarithms Answers

3(a)	$\log 0.8^x = \log 0.05$	$x = \log_{0.8} 0.05$ (M1)	M1		NMS: SC B2 for 13.425 or better
	$x \log_{10} 0.8 = \log_{10} 0.05 \text{ oe}$		A1		(B1 for 13.4 or 13.43; 13.42)
	x = 13.425 to 3dp	13.425(A2) (else A1 for 1 or 2dp)	A1	3	Condone greater accuracy
(b)(i)	$\frac{a}{1-r}$		M1		$S_{\infty} = \frac{a}{1-r} \text{ used}$
	$\frac{a}{1-r} = 5a \Rightarrow a = 5a(1-r)$		A1		Or better
	$\Rightarrow 1 = 5(1-r) \Rightarrow r = \frac{4}{5} = 0$ $n^{\text{th}} \text{ term} = 20 \times (0.8)^{n-1}$).8	A1	3	AG (be convinced)
(ii)	$n^{\text{th}} \text{ term} = 20 \times (0.8)^{n-1}$		M1		Condone 20×(0.8)".
	$n^{\text{th}} \text{ term} \le 1 \implies 0.8^{n-1} < \frac{1}{20}$	oe oe	A1		$0.8^{n-1} < 0.05$ or $0.8^{n-1} = k$, where $k = 0.05$ or k rounds up to 0.050
	Least n is 15		A1F	3	If not 15, ft on integer part of [answer (a)+2] provided n>2
					SC 3/3 for 15 if no error SC n th term=16 n-1 M1A0A0
		Total		9	

		Total		5	
	⇒ n = 8, 12		A1	2	completing of sq
(b)	$\Rightarrow (n-8)(n-12)=0$		M1		Accept alternatives eg formula,
	$\Rightarrow n^2 - 20n + 96 = 0$		A1	3	CSO. AG
	$\Rightarrow \frac{n^2}{5n-24} = 4$				
	$\Rightarrow \log_a \left[\frac{n^2}{5n - 24} \right] = \log_a 4$		M1		A second law of logs used leading to both sides being single log terms or single log term on LHS with RHS=0
/(4)	$\Rightarrow \log_a n^2 - \log_a (5n - 24) = \log_a 4$		M1		A law of logs used
7(a)	$2\log_a n - \log_a (5n - 24) = \log_a 4$				

	AV.114	ı		1
5(a)	$\log_a x = \log_a 6^2 - \log_a 3$	M1		One law of logs used correctly
	$\log_a x = \log_a \left(\frac{6^2}{3}\right)$	M1		A second law of logs used correctly
	$\log_{\omega} x = \log_{\omega} \frac{36}{3} \Longrightarrow x = 12$	A1	3	CSO AG
(b)	$\log_a y + \log_a 5 = 7 \Rightarrow \log_a 5y = 7$	M1		
	$\log_a y + \log_a 5 = 7 \Rightarrow \log_a 5y = 7$ $\Rightarrow 5y = a^7 \text{ or } y = \frac{1}{5}a^7 \text{ or } a = (5y)^{1/7}$	m1 A1	3	Eliminates logs Accept these forms
	Total		6	

3(a)(i)	{p=} 2	B1		Condone '64=82
(ii)	$\{q = \} - 2$	B1ft		Ft on '-p' if q not correct
(iii)	{r=} 0.5	B1	3	Condone '√8 = 8 ^{0.5} '
(b)	$\frac{8^x}{8^{0.5}} = 8^{-2} \Longrightarrow 8^{x-0.5} = 8^{-2} \text{ OE}$	M1		Using parts (a) $\&$ valid index law to stage $8^c=8^d$ (PI)
	$\Rightarrow x - 0.5 = -2 \Rightarrow x = -1.5$	A1ft	2	Ft on c's $(q+r)$ if not correct (Accept correct answer without working)
	ALT: $log8^x = logk$, $xlog8 = logk$; $x = -1.5$			(M1 A1)
	Total		5	

(ii)	$x^{\frac{1}{2}} = \sqrt{x}$	B1	1	Accept either form
(iii)	x ³	B1	1	
(b)(i)	$\int 3x^{\frac{1}{2}} dx = \frac{3}{\frac{3}{2}}x^{\frac{3}{2}} \{+c\}$	M1 A1		Index raised by 1 Simplification not yet required
	$=2x^{\frac{3}{2}}+c$	A1	3	Need simplification <u>and</u> the $+c$ OE
(ii)	$\int_{1}^{9} 3x^{\frac{1}{2}} dx = (2 \times 9^{\frac{3}{2}}) - (2 \times 1^{\frac{3}{2}})$	М1		F(9) – F(1), where F(x) is candidate's answer to (b)(i) [or clear recovery]
	= 52	A1ft	2	Ft on (b)(i) answer of form kx ^{1.5} i.e. 26k
	Total		8	

	10	rear .	10	
8(a)	$\log_a n = \log_a 3(2n-1)$	M1		OE Log law used PI by next line
	$\Rightarrow n = 3(2n-1)$	m1		OE, but must not have any logs.
(b)(i)	$\Rightarrow n = 3(2n-1)$ $\Rightarrow 3 = 5n \Rightarrow n = \frac{3}{5}$ $\log_a x = 3 \Rightarrow x = a^3$	A1 B1	3 1	
(ii)	$\log_a y - \log_a 2^3 = 4$	M1		$3\log 2 = \log 2^3$ seen or used any time in (ii)
	$\log_a \frac{y}{2^3} = 4 \begin{cases} xy = a^7 \times a^{\binom{3\log_a 2}{a^2}} \\ \text{or} \\ y = a^4 \times a^{\binom{3\log_a 2}{a^2}} \end{cases}$	M1		Correct method leading to an equation involving y (or xy) and a log but not involving + or -
	$\frac{y}{2^3} = a^4$ $\begin{cases} xy = a^7 \times 2^3 \\ \text{or} \\ y = a^4 \times 2^3 \end{cases}$ $by = a^3 \times 8a^4 \text{ or } 8a^7$	ml		Correct method to eliminate ALL logs e.g. using $\log_a N = k \Rightarrow N = a^k$ or using $a^{\log_a c} = c$
	$by = a^3 \times 8a^4 \text{ or } 8a^7$	A1	4	
		otal	8	