Core 3 Exponentials & Logarithms Answers

B1

M1

5(a)
$$a = -8$$

 $e^{2x} - 9 = 0$
 $e^{2x} - 9$

 $2x = \ln 9$

 $x = \ln 3$

A1

AG Condone verification

(b)
$$\left(e^{2x} - 9\right)^2 = e^{4x} - 18e^{2x} + 81$$

B1AG

(c)
$$V = \pi \int y^2 (dx)$$

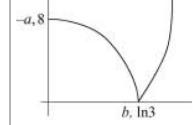
 $= (\pi) \int e^{4x} - 18e^{2x} + 81 \, dx$

$$= (\pi) \left[\frac{e^{4x}}{4} - 9e^{2x} + 81x \right]_{0}^{\ln 3}$$

В1 M1

$$= (\pi) \left[\frac{e^{4x}}{4} - 9e^{2x} + 81x \right]_0^{\ln 3}$$
$$= (\pi) \left[\left(\frac{e^{\ln 81}}{4} - 9e^{\ln 9} + 81\ln 3 \right) - \left(\frac{1}{4} - 9 \right) \right]$$

M1A1


1ST or 2nd term correct All correct

Attempt at limits with ln3 m1

(d)
$$= \pi [81 \ln 3 - 52]$$

A16

Modulus graph M1

A1F

All correct

Total

12

9(a)
$$y = x^{-2} \ln x$$

 $\frac{dy}{dx} = x^{-2} \frac{1}{x} - 2x^{-3} \ln x$

M1A1 A1

Use of product or quotient each term

$$=\frac{1-2\ln x}{x^3}$$

A1

4

Convincing argument $x^{-2} \times \frac{1}{x} = x^{-3}$

AG

(c)(i) At
$$A$$
, $\frac{dy}{dx} = 0$
 $1 - 2 \ln x = 0$
 $\ln x = \frac{1}{2}$
M1 Attempt at $\ln x = k$
 $x = e^{\frac{1}{2}}$
A1 2

5(a)

$$y = e^{2x} - 10e^x + 12x$$

 (i)
 $\frac{dy}{dx} = 2e^{2x} - 10e^x + 12$
 B1
 $2e^{2x}$

 B1
 $2e^{2x}$
 $2e^{2x}$

 B1
 $2e^{2x}$
 $2e^{2x}$

 B1F
 $2e^{2x}$
 $2e^{2x}$

 B2F
 $2e^{2x}$

				SC: verification
				ln 2 (B1)
				ln 3 (B1)
(iii)	$x = \ln 2$:			
	$y = e^{2\ln 2} - 10e^{\ln 2} + 12\ln 2$	M1		either substitution of their $x = \ln 2$
	or $2^2 - 10 \times 2 + 12 \ln 2$			$(e^x = 2)$ or their $x = \ln 3$ $(e^x = 3)$
	$= 4 - 20 + 12 \ln 2$			
	$=-16+12 \ln 2$	A1		
	$x=\ln 3$:			
	$y = e^{2\ln 3} - 10e^{\ln 3} + 12\ln 3$			
	$= 9 - 30 + 12 \ln 3$			
	$= -21 + 12 \ln 3$	A1	3	
	= 21 · 12m3	711		
(iv)	$x = \ln 2$:			
(11)				
	$\frac{d^2 y}{dx^2} = 4e^{2\ln 2} - 10e^{\ln 2}$	M1		use of, in either of their $e^x = 2.3$ into
	dx^2			12 12
				their $\frac{d^2y}{dx^2}$
				dx^2

Tota		13	
∴ minimum	A1	3	CSO
=36-30=6			
$\frac{dx^2}{dx^2} = 4c$			
$\frac{d^2 y}{dx^2} = 4e^{2\ln 3} - 10e^{\ln 3}$			
$x = \ln 3$:			
∴ maximum	A1		CSO
= 16 - 20 = -4			

(b)(i)
$$y = x \ln x$$

 $\frac{dy}{dx} = x \times \frac{1}{x} + \ln x$
 $= \ln x + 1$

M1 use of product rule (only differentiating, 2 terms with $+ \text{ sign}$)

(ii) $\int (\ln x + 1) dx = x \ln x$
 $\int \ln x dx = x \ln x - x(+c)$

M1 OE; attempt at parts with $u = \ln x$

(iii) $\int_{1}^{5} \ln x dx = [x \ln x - x]_{1}^{5}$
 $= (5 \ln 5 - 5) - (1 \ln 1 - 1)$
M1 correct substitution of limits into their (ii) provided $\ln x$ is involved

Sin 5 - 4

Total

(b)(i)
$$x = 2y^3 + \ln y$$

 $\frac{dx}{dy} = 6y^2 + \frac{1}{y}$
(ii) At (2,1)
 $\frac{dx}{dy} = 6 + 1 = 7$
 $\frac{dy}{dx} = \frac{1}{7}$
 $(y-1) = \frac{1}{7}(x-2)$

B1

A1

May be implied

A1

OE

	$x = \ln 2$	A1	2	AG
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{2x}$	B1		
	$x = \ln 2$, Gradient $= -2e^{2\ln 2}$	M1		$x = \ln 2$ into ke^{2x}
	= -8			
	Gradient normal = $\frac{1}{8} = \frac{1}{2e^{2\ln 2}}$	A1		OE
	Equation $y = \frac{1}{8}x - \frac{1}{8}\ln 2$	A1	4	OE
(d)	When $x = 0$			
	$y = -\frac{1}{8}\ln 2$	M1		Attempt to integrate their line and substitute $x = 0$, $\ln 2$
	Area $\Delta = \frac{1}{16} (\ln 2)^2$ condone – ve sign	A1√		$\frac{1}{2}$ (their y)×ln 2
	= 0.03			
	Total area = $4 \ln 2 - \frac{3}{2} + \frac{1}{16} (\ln 2)^2 = 1.30$	A1	3	CSO
	AWRT			
	Total		14	

1(a)
$$y = \ln x$$
 $\frac{dy}{dx} = \frac{1}{x}$ B1 1

(b) $y = (x+1)\ln x$ $\frac{dy}{dx} = (x+1) \times \frac{1}{x} + \ln x$ M1 A1 2 product rule

(c) $y = (x+1)\ln x$ $\frac{dy}{dx} = \frac{1}{x} + 1 + \ln x$ $x = 1$: $\frac{dy}{dx} = 1 + 1 = 2$ M1 substitute $x = 1$ into their $\frac{dy}{dx}$ Use of $m_1 m_2 = -1$ CSO

Total 7

7(a)(i)	$y = \left(x^2 - 3\right)e^x$			
	$y = (x^2 - 3)e^x$ $\frac{dy}{dx} = (x^2 - 3)e^x + 2xe^x$	M1 A1	2	product rule
(ii)	$\frac{d^2 y}{dx^2} = (x^2 - 3)e^x + 2xe^x + 2xe^x + 2e^x$	M1 A1	2	product rule from their $\frac{dy}{dx}$
(b)(i)	$\frac{dy}{dx} = 0$ $\Rightarrow e^{x} (x^{2} + 2x - 3) = 0$ $e^{x} (x+3)(x-1) = 0$ $\therefore x = -3, 1$			
	$\Rightarrow e^x \left(x^2 + 2x - 3 \right) = 0$	M1		$e^x f(x) = 0$ from $\frac{dy}{dx} = 0$
	$e^{x}(x+3)(x-1)=0$	m1		attempt at factorising or use of formula
	$\therefore x = -3, 1$	A1		first correct solution
		A1	4	second correct solution, and no others SC No working shown: x = -3 B2, $x = 1$ B2
(ii)	$x = -3 y'' = -4e^x \max (-0.2)$	M1		Condone slip
	$x = -3y'' = -4e^x \max (-0.2)$ $x = 1$ $y'' = 4e^x \min (10.9)$	A1	2	
	Total		10	