Core 3 Functions Answers

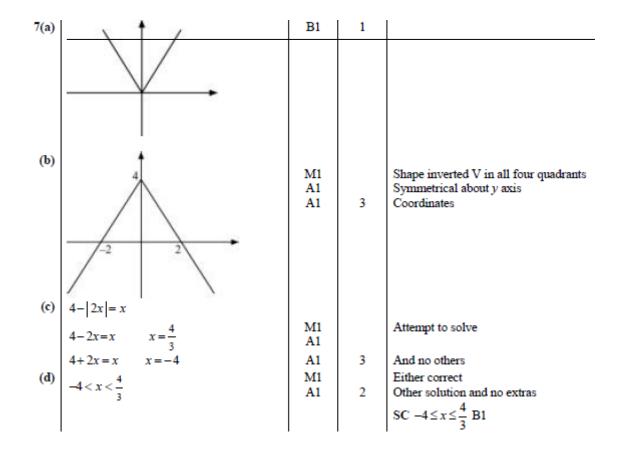
7(a) $\left(1, \frac{\pi}{2}\right)$ OE in decimals	B1		Or for -1 and 1
$\left(-1,-\frac{\pi}{2}\right)$	B1	2	
(b) †			
	M1		Translation in $+ ve x$ direction
0 1 2	M1		Correct shape
	A1	3	Correct Graph Through (1,0) touching y – axis

8(a)	$\big(\text{Range of f} \big) \; \geqslant 0$	B1	1	
(b)(i)	$fg(x) = \frac{1}{(x+2)^2}$	B1	1	OE Maybe in part (ii)
(ii)	$\frac{1}{\left(x+2\right)^2} = 4$			
	$(x+2)^2 = \frac{1}{4}$	M1		Or $4(x+2)^2 = 1$
	$fg(x) = \frac{1}{(x+2)^2}$ $\frac{1}{(x+2)^2} = 4$ $(x+2)^2 = \frac{1}{4}$ $x+2 = (\pm)\frac{1}{2}$ $x = -\frac{5}{2}, -\frac{3}{2}$	M1		(2x+5)(2x+3)=0
	$x = -\frac{5}{2}, -\frac{3}{2}$	A1 A1	4	
(-)(2)	Not one to one	E1	1	OE
(ii)	Not one to one $x = \frac{1}{y+2}$ $y+2 = \frac{1}{x}$ $y = \frac{1}{x} - 2 \qquad \left(\frac{1-2x}{x}\right)$ Total	M1		$x \Leftrightarrow y$
	$y+2=\frac{1}{x}$	M1		Attempt to isolate
	$y = \frac{1}{x} - 2 \qquad \left(\frac{1 - 2x}{x}\right)$	A1	3	
	Total		10	

4(a)(i)
(ii)
B1 1
$$y = |x|$$
M1 2 branches mod graph $x > 0$ for $y = 0$

(b)(i) $x = 2x - 4, x = 4$
 $-x = 2x - 4$
 $x = \frac{4}{3}$
A1 3 OE one value only

Alternative:
 $x^2 = (2x - 4)^2$
 $x = 4, \frac{4}{3}$
A1 A1A1


(ii) $\frac{4}{3} < x < 4$
M1 $\frac{4}{3}, 4$ (ft)identified as extremes

Total 8

8(a)	$f(x) = 2e^{3x} - 1$			
	Range: $f(x) > -1$ (or $y > -1$ or $f > -1$)	M1		for -1 only
4.	- 3v	A1	2	exactly correct
(b)	$y = 2e^{3x} - 1$	M1		$x \leftrightarrow v$
	$x = 2e^{3y} - 1$	WII		200
	$y = 2e^{3x} - 1$ $x = 2e^{3y} - 1$ $2e^{3y} = x + 1$ $e^{3y} = \frac{x+1}{2}$	M1		attempt to isolate
	$e^{3y} = \frac{x^3 + y}{2}$			•
	$y = \frac{1}{3} \ln \left(\frac{x+1}{2} \right)$	A1	3	all correct with no error AG (be
	3 (2)		_	convinced)
				k-
(c)	$f'^{-1}(x) = \frac{1}{3} \left(\frac{2}{x+1} \right) \times \frac{1}{2}$ OE	M1		for differentiation of $\ln \frac{k}{\text{their}(x\pm 1)}$
	$1 \left(x\right) = \frac{1}{3} \left(\frac{1}{x+1}\right) \wedge \frac{1}{2} $ OL	A1		for $\frac{1}{2}$
		A1		all correct
	x = 0			
	$\mathbf{f}'^{-1}(x) = \frac{1}{3}$	A1	4	CSO
	3		,	650
	Alternative			
	$f^{-1}(x) = \frac{1}{3}\ln(x+1) - \frac{1}{3}\ln 2$	M1A1		
	$f^{t-1}(x) = \frac{1}{2(x-x)}$	A 1		
	$f'^{-1}(x) = \frac{1}{3(x+1)}$ $f'^{-1}(0) = \frac{1}{2}$	A1		
	$f'^{-1}(0) = \frac{1}{3}$	A1		CSO
	Total		9	

9(a)	$x = \frac{1}{2}$	$y = \frac{\pi}{2}$	(or 1.57, sin ⁻¹ 1)	B1	1	ignore 90°
------	-------------------	---------------------	--------------------------------	----	---	------------

3(a)	$f(x) \le 3$	M1A1	2	M1 for $f < 3, x \le 3$
C(II)	$\Gamma(x) \leq 3$	1,11111	2	Condone y, f, range
(b)(i)	y = 2			
	$y = \frac{1}{x+1}$			
	$x+1=\frac{2}{y}$	M1		Attempt to obtain x as a function of y or y as a function of x
	$x = \frac{2}{y} - 1$	M1		$x \leftrightarrow y$ at any stage
	$y/g^{-1}(x) = \frac{2}{x} - 1 = \frac{2-x}{x}$	A1	3	Any correct form
(ii)	$\left(g^{-1}(x)\right) \neq -1$	B1	1	
(c)(i)	$h(x) = \frac{2}{3 - x^2 + 1}$	M1		
	f $(x) \le 3$ $y = \frac{2}{x+1}$ $x+1 = \frac{2}{y}$ $x = \frac{2}{y}-1$ $y/g^{-1}(x) = \frac{2}{x}-1 = \frac{2-x}{x}$ $(g^{-1}(x)) \ne -1$ $h(x) = \frac{2}{3-x^2+1}$ $= \frac{2}{4-x^2} = \frac{2}{(2-x)(2+x)}$ $(x \in \mathbb{R}), x \ne +2, x \ne -2$ Total	A1	2	
(ii)	$(x \in \mathbb{R}), x \neq +2, x \neq -2$	B1	1	Condone omit 'x is real' Allow $x^2 \neq 4$
	Total		9	

3(a)	cosec x = 2			
	$\Rightarrow \sin x = \frac{1}{2}$	M1		30° scores M1 implied
	x = 30, 150	A1	2	and no extras in range
(b)(i)	1	B1	1	
(ii)				
	1 11	M1		all positive, 2 U shapes
		A1	2	minima consistent > 0, not intersecting with each other or y-axis
	0 180 360			
(c)	x = 30, 150, 210, 330	B1F		3 correct values from their (a), which must be θ , 180 – θ
		B1	2	all correct and no extras in range

5(a)	$f(x) \ge 0$	allow $y \ge 0$	M1		>0 or $f \ge 0$ or ≥ 0
			A1	2	
(b)(i)	$\sqrt{\frac{1}{x}-2}$		B1	1	
(ii)	X		M1		squaring their (b)(i) in an equation
	$\frac{1}{x} = 3$	OE	A1		
	$x = \frac{1}{3}$		A1	3	CSO
(c)	$y = \sqrt{x-2}$ $y^{2} = x-2$ $x^{2} = y-2$ $y = x^{2} + 2$				
	$y^2 = x - 2$		M1		attempt to isolate; condone 1 slip
	$x^2 = y - 2$		M1		reverse $x \Leftrightarrow y$
	$y = x^2 + 2$		A1	3	
		Total	l	9	