Core 3 Integration Answers

3(a)(i)
$$f' = \frac{dy}{dx} = 4x^3 + 2$$
B1
1

(ii)
$$\int \frac{2x^3 + 1}{x^4 + 2x} dx$$

$$= \frac{1}{2} \ln(x^4 + 2x) (+c)$$
M1
A1
2
B1
For $k \ln(x^4 + 2x)$
By substitution $k \ln u$
M1
correct A1

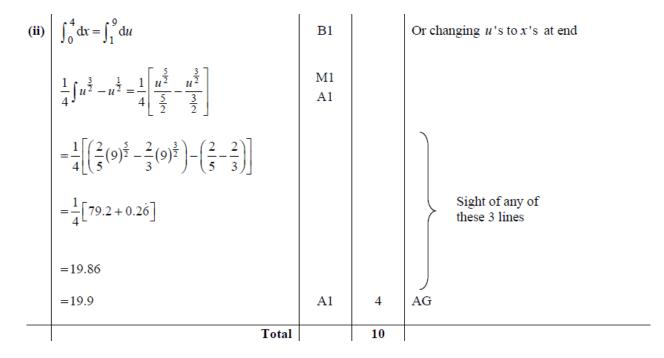
(b)(i) $u = 2x + 1$

$$du = 2 dx$$

$$\int x\sqrt{2x + 1} dx =$$

$$\int \left(\frac{u - 1}{2}\right) \sqrt{u} \frac{du}{2}$$
M1
Must be in terms of u only incl. du

$$= \frac{1}{4} \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$
A1
3
AG



(b)
$$\int x^{-2} \ln x \, dx \qquad u = \ln x \quad dv = x^{-2}$$
 M1
$$du = \frac{1}{x} \quad v = -x^{-1}$$
 A1
$$\int = -\frac{1}{x} \ln x + \int x^{-2} \, dx$$
 A1
$$= -\frac{1}{x} \ln x - \frac{1}{x} (+c)$$
 A1 4

(ii)
$$R = \left[-\frac{1}{x} (\ln x + 1) \right]_{1}^{5}$$

$$= -\frac{1}{5} (\ln 5 + 1) + (\ln 1 + 1)$$

$$= \frac{1}{5} (4 - \ln 5)$$
A1
$$R = \left[\text{Their (b)} \right]_{1}^{5}$$
OE
$$A1$$
3 convincing argument; AG

(b)
$$\int x(2x+1)^8 dx$$

 $u = 2x + 1$
 $du = 2 dx$

B1

OE

$$\int = \int \left(\frac{u-1}{2}\right) u^8 \left(\frac{du}{2}\right)$$
 $= \frac{1}{4} \int u^9 - u^8 du$

$$= \frac{1}{4} \left[\frac{u^{10}}{10} - \frac{u^9}{9}\right]$$
B1

B1

 $p \frac{u^{10}}{10} + q \frac{u^9}{9}$

$$= \frac{(2x+1)^{10}}{40} - \frac{(2x+1)^9}{36} (+c)$$

A1

A1

OE; CAO
SC: correct answer, no working/parts in x (B1)

4(a)	$\int x \sin x \mathrm{d}x \qquad u = x$			
	$\frac{\mathrm{d}v}{\mathrm{d}x} = \sin x$	M1		For differentiating one term and
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 1 v = -\cos x$			integrating other
	$\int_{-\infty}^{\infty} dx$ $\int_{-\infty}^{\infty} -x \cos x - \int_{-\infty}^{\infty} -\cos x (dx)$	m1		For correctly substituting their terms into
		A1		parts formula
	$=-x\cos x+\sin x (+c)$	A1	4	CSO
(b)	$u = x^2 + 5$ $du = 2x dx$			
				$\int ku^{\frac{1}{2}}(du) \text{ condone omission of } du$
	$\int = \int \frac{1}{2} u^{\frac{1}{2}} (\mathrm{d}u)$	M1		but M0 if dx
		A1		$k = \frac{1}{2}$ OE
	3			Ft $\int ku^{\frac{1}{2}} du$
	$=\frac{u^{\frac{3}{2}}}{3}$	A1√		To Jan da
1		· 		·
	$=\frac{1}{3}\sqrt{(x^2+5)^3}$ (+c)	A1	4	$\frac{2}{\sqrt{(2-x)^3}}$
(0)	$y = x^2 - 9$			SC $\frac{2}{6}\sqrt{(x^2+5)^3}$ with no working B3
(c)	$y = x^2 - 9$ $x^2 = y + 9$			
	$V = \pi \int x^2 \mathrm{d}y$	B1		Must have π and x^2 , condone omission of dy, but B0 if dx
	$=\pi\int (y+9)\mathrm{d}y$			
	$= (\pi) \left[\frac{y^2}{2} + 9y \right]_1^2 \text{ or } (\pi) \left[\frac{(y+9)^2}{2} \right]_1^2$	M1		["their x^2 "dy integrated π not
	$\begin{bmatrix} 2 & J_1 & \ddots & \begin{bmatrix} 2 & J_1 \end{bmatrix}$			Limits 2 and 1 substituted in necessary
	$= (\pi) \left[20 - 9\frac{1}{2} \right]$	m1		correct order including – sign
	$=10\frac{1}{2}\pi$	A1	4	CSO
	Total		12	

6(a)	$\int xe^{5x}dx$			
	$u = x$ $dv = e^{5x}$	M1		integrate one term, differentiate one term
	$du = 1 v = \frac{1}{5}e^{5x}$	A1		
	$\int = \frac{1}{5} x e^{5x} - \int \frac{1}{5} e^{5x} dx$	A1		
	$\int xe^{5x} dx$ $u = x dv = e^{5x}$ $du = 1 v = \frac{1}{5}e^{5x}$ $\int = \frac{1}{5}xe^{5x} - \int \frac{1}{5}e^{5x} dx$ $= \frac{1}{5}xe^{5x} - \frac{1}{25}e^{5x} (+c)$	A1	4	
(b)(i)	$u = x^{\frac{1}{2}}$ $du = \frac{1}{2}x^{-\frac{1}{2}} dx$ $\int = \int \frac{1}{1+u} \times 2 du$			
	$du = \frac{1}{2}x^{-\frac{1}{2}} dx$	M1		
	$\int = \int \frac{1}{1+u} \times 2 \mathrm{d}u$	A1	2	correct with no errors; AG
(ii)	$\int_{1}^{9} dx = \int_{1+u}^{3} \frac{2}{1+u} du$	m1		correct limits used in correct expression, ignoring k
	$= [2\ln(1+u)]_1^3$ = $2\ln 4 - 2\ln 2$	M1		for $k \ln (1+u)$
	$= 2 \ln 4 - 2 \ln 2$ (= \ln 4)	A1	3	ISW OE
	Total	l	9	