
Core 3 Trigonometry Answers

1(a)	$\frac{dy}{dx} = 3\sec^2 3x$ Alternative Use of product/Quotient rule $\frac{3\cos^2 3x + 3\sin^2 3x}{\cos^2 3x}$	(M1) (A1)	M1 A1	2	for sec 3x SC/3sec ² x B1 Good attempt Correct
4(a)	$2 \csc^{2} x = 5(1 - \cot x)$ 2+2 \cot^{2} x = 5 - 5 \cot x 2 \cot^{2} x + 5 \cot x - 3 = 0		M1 A1	2	use of $\csc^2 x = 1 + \cot^2 x$ AG
	$(2\cot x-1)(\cot x+3)=0$		M1		or $2+5t-3t^2 = 0$ Or in $\tan x$ (2-t)(1+3t) = 0
(c)	$\cot x = \frac{1}{2}, -3$ $\tan x = 2, -\frac{1}{3}$ x = 1.1, -2.0 x = -0.3, 2.8 AWRT		A1 B1 B1 B1	2 3	AG Any 2 correct Any 3 correct 4 correct B1 B2
	- 6				
3(a)	$\sec x = 5$ $\cos x = 0.2$ x = 1.37, 4.91 AWRT		M1 A1A1	3	
(b)	$\tan^2 x = 3\sec x + 9$				
	$\sec^2 x - 1 = 3 \sec x + 9$		M1		for using $\sec^2 x = 1 + \tan^2 x$ OE
	$\sec^2 x - 3 \sec x - 10 = 0$		A1	2	AG
(c)	$(\sec x - 5)(\sec x + 2) = 0$		M1		or use of formula (attempt)
	$\sec x = 5, -2$		A1		
	$\cos x = 0.2, -0.5$				
	x = 1.37, 4.91		B1F	4	any 2 correct or ft their 2 answers in (a)
	2.09, 4.19		A1	4	all 4 correct, no extras

M1		For I + (II or III)	
A1		All correct	
E1		Allow translation	
B1	4	Correct vector or description	
		_	
	A1 E1	A1 E1	A1 All correct E1 Allow translation

5(a)(i)	$2(\csc^2 x - 1) + 5 \csc x = 10$	M1		
	$2\csc^2 x - 2 + 5\csc x - 10 = 0$			
	$2 \operatorname{cosec}^2 x + 5 \operatorname{cosec} x - 12 = 0$	A1	2	AG
(ii)	$(2 \operatorname{cosec} x - 3)(\operatorname{cosec} x + 4) = 0$	M1		Attempt to solve
	$\csc x = \frac{3}{2} \text{ or } -4$	A1		Condone answers with no method shown
	$\sin x = \frac{2}{3} \text{ or } -\frac{1}{4}$	A1	3	AG
(b)	$(\theta - 0.1) = 0.73, 2.41, -0.25, -2.89$	B1		2 correct values, may be implied later
	AWRT			(41.8, 138.2, -165.5, -14.5)
	$\theta = 0.83, 2.51, -0.15, -2.79$ AWRT	B1		2 correct answers
		B1	3	+ 2 correct answers and no extra within
				range

(ii)	$y = x^2 \tan x$	M1		Product rule
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \sec^2 x + 2x \tan x$	A1	2	

8(a)	$\tan x \ (+ c)$	B 1	1	
(b)	$\mathbf{f}(x) = \frac{\cos x}{\sin x}$			
	$f'(x) = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$ $= \frac{-1}{\sin^2 x}$	M1 A1 A1		quotient rule $\frac{\pm \sin^2 x \pm \cos^2 x}{\sin^2 x}$ use of $\sin^2 x + \cos^2 x = 1$
	$=-\operatorname{cosec}^2 x$	A1	4	AG CSO
				Special cases
				$f(x) = \frac{\cot x}{1}$
				$\mathbf{f}'(x) = \frac{1 \times -\operatorname{cosec}^2 x - \cot x \times 0}{1^2} \text{M1}$
				$=-\csc^2 x$ A1 (max 2/4)
				Or $f(x) = \frac{1}{\tan x}$
				$\mathbf{f}'(x) = \frac{\tan x \times 0 - 1 \times \sec^2 x}{\tan^2 x} \qquad \text{M1 A1}$
				$=\frac{-\sec^2 x}{\tan^2 x}$
				$=\frac{-1}{\sin^2 x} = -\csc^2$ A1 (max 3/4)

(c)	LHS = $\tan^2 x + \cot^2 x + 2 \tan x \cot x$ = $\tan^2 x + 1 + \cot^2 x + 1$	M1		expanding
	$= \tan^2 x + 1 + \cot^2 x + 1$	M1		correct use of trig identities
	$= \sec^2 x + \csc^2 x$	A1	3	CSO
	=RHS			
(d)	$\int (\tan x + \cot x)^2 dx = \int \sec^2 x + \csc^2 x dx$ $= [\tan x - \cot x]_{0.5}^{-1}$	M1 M1 A1		use of identity $\pm \tan x \pm \cot x$ OE
	= 0.91531.2842 = 2.2	A1	4	AMPT