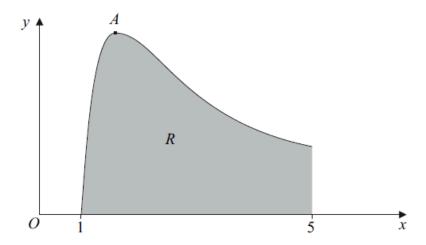
Core 3 Integration Questions

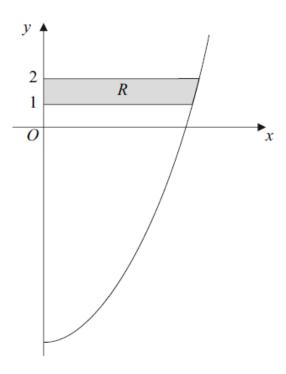

3 (a) (i) Given that
$$f(x) = x^4 + 2x$$
, find $f'(x)$. (1 mark)

(ii) Hence, or otherwise, find
$$\int \frac{2x^3 + 1}{x^4 + 2x} dx$$
. (2 marks)

(b) (i) Use the substitution u = 2x + 1 to show that

$$\int x\sqrt{2x+1} \, dx = \frac{1}{4} \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$
 (3 marks)

- (ii) Hence show that $\int_0^4 x\sqrt{2x+1} \ dx = 19.9$ correct to three significant figures. (4 marks)
- (b) Using integration by parts, find $\int x^{-2} \ln x \, dx$. (4 marks)
- (c) The sketch shows the graph of $y = x^{-2} \ln x$.



(ii) The region R is bounded by the curve, the x-axis and the line x = 5. Using your answer to part (b), show that the area of R is

$$\frac{1}{5}(4-\ln 5) \tag{3 marks}$$

(b) Use the substitution u = 2x + 1 to find $\int x(2x + 1)^8 dx$, giving your answer in terms of x.

- 4 (a) Use integration by parts to find $\int x \sin x \, dx$. (4 marks)
 - (b) Using the substitution $u = x^2 + 5$, or otherwise, find $\int x\sqrt{x^2 + 5} \, dx$. (4 marks)
 - (c) The diagram shows the curve $y = x^2 9$ for $x \ge 0$.

The shaded region R is bounded by the curve, the lines y = 1 and y = 2, and the y-axis.

Find the exact value of the volume of the solid generated when the region R is rotated through 360° about the y-axis. (4 marks)

- 6 (a) Use integration by parts to find $\int xe^{5x} dx$. (4 marks)
 - (b) (i) Use the substitution $u = \sqrt{x}$ to show that

$$\int \frac{1}{\sqrt{x}(1+\sqrt{x})} \, \mathrm{d}x = \int \frac{2}{1+u} \, \mathrm{d}u \qquad (2 \text{ marks})$$

(ii) Find the exact value of $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})} dx$. (3 marks)