Core 4 Algebra & Functions Answers

1(a)(i) | f(1) = 0Β1 1 (ii) f(-2) = -24 + 8 + 14 + 2 = 0B1 1 $\frac{(x-1)(x+2)}{3x^3+2x^2-7x+2} = \frac{(x-1)(x+2)}{(x-1)(x+2)(ax+b)}$ (iii) Recognising (x-1), (x+2) as factors B1 ΡI $ax^3 = 3x^3 \qquad -2b = 2$ а Β1 3 b b = -1B1 a = 3Or By division M1 attempt started M1 complete division A1 Correct answers **(b)** Use $\frac{1}{3}$ B1 $3\left(\frac{1}{3}\right)^3 + 2\left(\frac{1}{3}\right)^2 - 7 \times \frac{1}{3} + d = 2$ Remainder Th^M with $\pm \frac{1}{3} \pm 3$ M1 Ft on $-\frac{1}{3}\left($ answer $-\frac{4}{9}\right)$ d = 43 A1F Or by division M1 M1 A1 as above Total 8 5(c) $2x^2 - 3 =$ $A(1-x)^{2} + B(3-2x)(1-x) + C(3-2x)$ M1Or by equating coefficients x=1 $-1=C\times 1$ $x=\frac{3}{2}$ $\frac{3}{2}=A\times\frac{1}{4}$ M1 same M1 A1 collect terms M1 equate coefficients A1 2 correct A1 3 correct C = -1A = 6Follow on A and C A1 x = 0 (-3 = 6 + 3B - 3)or other value \Rightarrow equation in A, B, C m1B = -2A1 5

1 (a)(i	p(2) = 0	B1	1		
(ii	See	B1			
	$p\left(-\frac{1}{2}\right) = 6 \times \left(-\frac{1}{8}\right) - 19 \times \frac{1}{4} + 9\left(-\frac{1}{2}\right) + 10$ = 0	M1 A1	3	Use $\pm \frac{1}{2}$ Arithmetic to show = 0 and conclusion. Long division : $0/3$	
(iii	p(x) = (2x+1)(x-2)(3x-5)	B1 B1	2	x-2 Complete expression	
(b)	$\frac{3x(x-2)}{(2x+1)(x-2)(3x-5)}$	M1		For $\frac{3x(x-2)}{\text{their (a)(iii)}}$	
	$=\frac{3x}{(2x+1)(3x-5)}$	A1	2	$Or \frac{3x}{6x^2 - 7x - 5} \qquad No ISW on A1$	
	Total 8				
3(a)	$9x^2 - 6x + 5$				
	= 3(3x-1)(x-1) + A(x-1) + B(3x-1)	B1		Or $3 + \frac{6x+2}{(3x-1)(x-1)}$	
	$x = 1 \qquad \qquad x = \frac{1}{3}$	M1		Substitute $x = 1$ or $x = \frac{1}{3}$	
	$9x^{2} - 6x + 5$ = 3(3x - 1)(x - 1) + A(x - 1) + B(3x - 1) x = 1 x = $\frac{1}{3}$ B = 4 A = -6	A1A1	4	Or equivalent method (equating coefficients, simultaneous equations)	
(b)	$\int = \int 3 - \frac{6}{3x - 1} + \frac{4}{x - 1} \mathrm{d}x$	M1		Attempt to use partial fractions	
	= 5x	B1			
	$-2\ln(3x-1) + 4\ln(x-1)(+c)$	M1		$p\ln(3x-1) + q\ln(x-1)$	
		A1F	4	Condone missing brackets Follow through on <i>A</i> and <i>B</i> ; brackets needed.	
	Total		8		

				Multiply out and compare coefficients: M1 – evidence of use
(c)	a = -2, $b = -3$	B1, B1	2	Inspection expected By division: M1 – complete method A1 CAO
				SC Written explanation with $g(\frac{1}{2}) = 0$ not seen/clear E2,1,0
(b)	$g\left(\frac{3}{2}\right) = 0 \Longrightarrow d + 4 = 0 \Longrightarrow d = -4$	M1A1	2	AG (convincingly obtained) SC Written explanation with $g\left(\frac{3}{2}\right) = 0$
	= 4	A1	2	
2(a)	$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 7\left(\frac{3}{2}\right)^2 + 13$	M1		Substitute $\pm \frac{3}{2}$ in f(x)

4(a)(i)	$\frac{3x-5}{x-3} = 3 + \frac{4}{x-3}$			By division:
	x-3 $x-3$	B1, B1	2	B1 for 3, B1 for $\frac{4}{x-3}$ or $B = 4$
				By partial fractions: M1 multiply by $x - 3$ and using 2 values of x, A1 both correct
(ii)	$\int 3 + \frac{4}{x-3} dx = 3x + 4 \ln (x-3)(+c)$	M1A1F	2	$M1\int 3+\frac{4}{x-3} dx$ and attempt at integrals
	* 5			ft on <i>A</i> and <i>B</i> ; condone omission of brackets around $x - 3$
	Alternative: By substitution $u = x - 3$			
	$\int \frac{3x-5}{x-3} \mathrm{d}x = \int \frac{3u+4}{u} \mathrm{d}u$	(M1)		Integral in terms of u
	$=3(x-3)+4\ln(x-3)$	(A1)		Correct, in x
(b)(i)	6x - 5 = P(2x - 5) + Q(2x + 5)	M1		Clear evidence of use of cover-up rule M2
	$x = \frac{5}{2} \qquad x = -\frac{5}{2}$	ml		
	10 = 10Q - 20 = -10P Q = 1 P = 2			
	Q=1 $P=2$	A1	3	
(ii)	$\int \frac{2}{2x+5} + \frac{1}{2x-5} \mathrm{d}x$	M1		Vireless Network Connection is now connected
	$\ln(2x+5) + \frac{1}{2}\ln(2x-5)(+c)$	M1		
	$m(2x+3)+\frac{2}{2}m(2x-3)(+c)$	A1F	3	ft on P and Q ; must have brackets
	Total		10	

1(a)	$2\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 3 = -3$	M1A1	2	use of $\pm \frac{1}{2}$
	Alt algebraic division:			SC NMS –3 1/2 No ISW, so subsequent answer "3" AO
	$ \begin{array}{c} x \\ 2x+1 \overline{\smash{\big)}2x^2 + x - 3} \\ 2x^2 + x \end{array} $	(M1)		complete division with integer remainder
	$\frac{2x + x}{-3}$ Alt	(A1)	(2)	remainder = -3 stated, or -3 highlighted
	$\frac{x(2x+1)-3}{2x+1}$	(M1)		attempt to rearrange numerator with $(2x+1)$ as a factor
		(A1)	(2)	remainder $= -3$ stated, or -3 highlighted
(b)	$\frac{(2x+3)(x-1)}{(x+1)(x-1)}$	B1 B1		numerator denominator not necessarily in fraction
	$=\frac{2x+3}{x+1}$	B1	3	CAO in this form. Not $\frac{2x+3}{x+1}$ $\frac{x-1}{x-1}$
	$\frac{\text{Alternative}}{\frac{2x^2 - 2 + x - 1}{x^2 - 1}}$			
	$=2+\frac{x-1}{x^2-1}$	(M1)		
	$=2 + \frac{x-1}{(x-1)(x+1)}$	(B1)		
	$=2 + \frac{1}{x+1}$	(A1)	(3)	
	T	otal	5	

<mark>(b)</mark>	$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$ $1+4x = A(1+3x) + B(1+x)$	M1		correct partial fractions form, and multiplication by denominator
	$x = -1, \ x = -\frac{1}{3}$	m1		Use (any) two values of x to find A and B
	$A = \frac{3}{2}, B = -\frac{1}{2}$	A1	3	A and B both correct
	Alt:			
	$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$	(M1)		correct partial fractions form, and multiplication by denominator
	1 + 4x = A(1+3x) + B(1+x)			
	$A + B = 1, \ 3A + B = 4$	(m1)		Set up and solve
	$A = \frac{3}{2}, B = -\frac{1}{2}$	(A1)	(3)	A and B both correct
