Core 4 Exponential Growth Answers

M1A1 3 Or using logs: M1 ln $\left(\frac{5000}{80}\right) = 56 \ln k$ A1k = $e^{\frac{\ln\left(\frac{62.5}{56}\right)}{66}}$ Or using logs: M1 ln $\left(\frac{5000}{80}\right) = 56 \ln k$ A1k = $e^{\frac{\ln\left(\frac{62.5}{56}\right)}{56}}$ Or 3/3 for $k = 1.076636$ Or 1.076637 seen 200648 using full register k M1 $t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 t ln $k = \ln 10000$ A1 CAO Or trial and improvement M1 expression M1 125, 124, A1 2024	4(a)	A = 80	В1	1	
Cr using logs: M1 ln $\left(\frac{3380}{80}\right)$ = 56 ln k A1 k = $e^{\ln\left(\frac{62.5}{56}\right)}$ Or using logs: M1 ln $\left(\frac{3380}{80}\right)$ = 56 ln k A1 k = $e^{\ln\left(\frac{62.5}{56}\right)}$ Or 3/3 for k = 1.076636 Or 1.076637 seen 200648 using full register k M1 $t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 $t \ln k = \ln 10000$ A1 CAO Or trial and improvement M1 expression M1 125, 124, A1 2024	(b)	$5000 = 80 \times k^{56}$	M1		∫SC1 Verification. Need 62.51 or better
Cr using logs: M1 ln $\left(\frac{3380}{80}\right)$ = 56 ln k A1 k = $e^{\ln\left(\frac{62.5}{56}\right)}$ Or using logs: M1 ln $\left(\frac{3380}{80}\right)$ = 56 ln k A1 k = $e^{\ln\left(\frac{62.5}{56}\right)}$ Or 3/3 for k = 1.076636 Or 1.076637 seen 200648 using full register k M1 $t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 $t \ln k = \ln 10000$ A1 CAO Or trial and improvement M1 expression M1 125, 124, A1 2024					
(c)(i) $V = 80 \times k^{106} = 200707$ M1A1 2 200648 using full register k (ii) $\ln 10000 = \ln k^{t}$ M1 $t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 $t = \ln 10000$ A1 CAO Or trial and improvement M1 expression M1 125, 124, A1 2024		$k = \sqrt[56]{\frac{5000}{80}} \approx 1.07664$	M1A1	3	Or using logs: M1 $\ln \left(\frac{5000}{80} \right) = 56 \ln k$
(c)(i) $V = 80 \times k^{106} = 200707$ M1A1 2 200648 using full register k (ii) $\ln 10000 = \ln k^{t}$ M1 $t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 $t \ln k = \ln 10000$ A1 CAO Or trial and improvement M1 expression M1 125, 124, A1 2024					$A1k = e^{\ln\left(\frac{62.5}{56}\right)}$
(c)(i) $V = 80 \times k^{106} = 200707$ M1A1 2 200648 using full register k (ii) $\ln 10000 = \ln k^t$ M1 M1A1 3 M1 $t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 $t \ln k = \ln 10000$ A1 CAO Or trial and improvement M1 expression M1 125, 124, A1 2024					Or $3/3$ for $k = 1.076636$
(ii) $\ln 10000 = \ln k^t$					Or 1.076637 seen
$t = \frac{\ln 10000}{\ln k} = 124.7 \Rightarrow 2024$ M1A1 3 M1 $t \ln k = \ln 10000$ A1 CAO Or trial and improvement M1expression M1 125, 124, A1 2024	(c)(i)	$V = 80 \times k^{106} = 200707$	M1A1	2	200648 using full register k
A1 CAO Or trial and improvement M1expression M1 125, 124, A1 2024	(ii)		M1		
A1 CAO Or trial and improvement M1expression M1 125, 124, A1 2024		$t = \frac{\ln 10000}{1000} = 124.7 \Rightarrow 2024$	M1A1	3	$M1 t \ln k = \ln 10000$
M1 125, 124, A1 2024		ln k			A1 CAO
					Or trial and improvement M1expression
					M1 125, 124, A1 2024
Total 9		Total		9	

8(a)(i)	(5000 - x) seen in a product	B1		Could be implied, eg 5000a – xa
	$\frac{\mathrm{d}x}{\mathrm{d}t} = kx(5000 - x)$	B1	2	
(ii)	$200 = k \times 1000 \times (5000 - 1000)$	M1		$\frac{dx}{dt} = 200, x = 1000$ in their diff. equation
	k = 0.00005	A1	2	Condone ts and $t = 0$ for M1 CAO OE
(b)(i)	$t = 4 \ln \left(\frac{4 \times 2500}{5000 - 2500} \right) = 5.5 \text{ (hours)}$	M1 A1	2	$x \to 2500 \text{ (or 4 ln 4)}$ CAO
(ii)	$e^{\frac{30}{4}}$	B1		
	$e^{7.5} = \frac{4x}{5000 - x}$	M1		OE
	$5000 \times e^{7.5} = x (4 + e^{7.5})$	m1		Soluble for <i>x</i>

Or 4988 or 4990; integer value only

8(a)(i) $\int \frac{dy}{y} = \int \sin t dt$ Attempt to separate as $\ln y = -\cos t + C$ A1,A1 A1 for $\ln y$; A1 for $-\infty$	
condone missing C	·cost;
$y = Ae^{-\cos t}$ A1 4 Present; or $y = e^{-\cos t}$	st+C
(ii) $y = 50, t = \pi$: $50 = Ae^{-\cos \pi} = Ae$ M1 A1 Substitute $y = 50, t = \pi$ Can have $50 = e^{1+C}$ if $e^{C} = \frac{50}{e}$	
$y = 50e^{-1}e^{-\cos t}$ A1 3 AG (convincingly obt	tained)
Alternative: Must have a constant in answer to (a)(i) $y = Ae^{-\cos t}$ or $y = e^{-\cos t + c}$ or $\ln y = -\cos t + c$ Alternative: Substitute $y = 50$, $t = 1$ $\ln y = -\cos t + \ln 50$	$y = -\cos t + c M1$
$50 = Ae^{-\cos \pi} 50 = e^{-\cos \pi + c} \ln 50 = -\cos \pi + c (M1)$ $\ln \frac{y}{50} = -1 - \cos t (A1)$	AG) A1
$50 = Ae$ $50 = e^{1+c}$ $\ln y = -\cos t + \ln 50 - 1$ (A1)	
$y = 50e^{-1-\cos t} \ y = e^{-\cos t} \frac{50}{e} \ \ln\left(\frac{y}{50}\right) = -1-\cos t$ (A1)	
(b)(i) $t = 6$: $y = 50e^{-1}e^{-\cos 6} = 7.0417 \approx 7 \text{ cm}$ M1A1 2 Degrees 6.8 SC1 7 or 7.0 for A1	
(ii) $t = \pi \implies (\sin t = 0 \implies) \frac{dy}{dt} = 0$ B1 Condone x for t	
$\frac{d^2 y}{dt^2} = y \cos t + \frac{dy}{dt} \sin t$ M1 For attempt at produc	et rule including $\frac{dy}{dt}$
term; must have $\frac{d^2y}{dx^2}$	
$t = \pi$ A1	
$\frac{d^2 y}{dt^2} = y \cos \pi + \frac{dy}{dt} \sin \pi$ $= -50 \implies \max$ A1 A1 Accept = -y, with expression in the expression of the expression of the expression is a single factor of the expression of the expre	xplanation that y is
8(b)(ii) Alternative:	
(cont) $y = 50e^{-(1+\cos t)} = \frac{50}{e}e^{-\cos t}$	
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \sin t = 0 \text{at} t = \pi \tag{B1}$	
$\frac{dt}{dt^2} = \frac{50}{e} e^{-\cos t} \times \cos t + \frac{50}{e} e^{-\cos t} \times \sin^2 t \qquad (M1)$ Attempt at product rule (A1)	ıle
Substitute $t = \pi \to -50 \Rightarrow \max$ (A1)	
Total 13	

$=-\frac{1}{14}(x-15)$	m1		Or $\frac{1}{14} \left(12e^{-\frac{t}{14}} \right)$ and $12e^{-\frac{t}{14}} = 15 - x$ seen
$=\frac{1}{14}(15-x)$	A1	3	AG – be convinced CSO
Alt: $t = -14 \ln \left(\frac{15 - x}{12} \right)$	(M1)		attempt to solve given equation for t
$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-14\left(-\frac{1}{12}\right)}{\left(\frac{15-x}{12}\right)}$	(m1)		differentiate wrt x, with $\frac{1}{\frac{15-x}{12}}$ seen; OE
$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{14}{15 - x} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{14}(15 - x)$	(A1)	(3)	AG – be convinced
Alt: (backwards)			
$\int \frac{dx}{15 - x} = \int \frac{dt}{14} = \pm 14 \ln (15 - x) = t + c$	(M1)		
Use $(0,3):-14\ln(15-x)+14\ln 12 = t$	(m1)		
Solve for $x: x = 15 - 12e^{-\frac{t}{14}}$	(A1)	(3)	All steps shown

(ii)	rate of growth = 0.5 (cm per day)	В1	1	Accept $\frac{7}{14}$
	Total		11	