Decision 1 Matching Graph Questions

1 (a) Draw a bipartite graph representing the following adjacency matrix.

	\boldsymbol{U}	\boldsymbol{V}	\boldsymbol{W}	\boldsymbol{X}	\boldsymbol{Y}	\boldsymbol{Z}
\boldsymbol{A}	1	0	1	0	1	0
\boldsymbol{B}	0	1	0	1	0	0
\boldsymbol{C}	0	1	0	0	0	1
\boldsymbol{D}	0	0	0	1	0	0
\boldsymbol{E}	0	0	1	0	1	1
\boldsymbol{F}	0	0	0	1	1	0

(b) Given that initially A is matched to W, B is matched to X, C is matched to V, and E is matched to Y, use the alternating path algorithm, from this initial matching, to find a complete matching. List your complete matching.

1 Five people, A, B, C, D and E, are to be matched to five tasks, 1, 2, 3, 4 and 5 . The table shows which tasks each person can do.

Person	Tasks
A	$1,3,5$
B	2,4
C	2
D	4,5
E	3,5

(a) Show this information on a bipartite graph.
(b) Initially A is matched to task $3, B$ to task $4, C$ to task 2 and E to task 5 .

Use an alternating path from this initial matching to find a complete matching.

2 Five people A, B, C, D and E are to be matched to five tasks R, S, T, U and V.
The table shows the tasks that each person is able to undertake.

Person	Tasks
A	R, V
B	R, T
C	T, V
D	U, V
E	S, U

(a) Show this information on a bipartite graph.
(b) Initially, A is matched to task V, B to task R, C to task T, and E to task U.

Demonstrate, by using an alternating path from this initial matching, how each person can be matched to a task.

1 Six people, A, B, C, D, E and F, are to be matched to six tasks, 1,2,3,4,5 and 6 . The following adjacency matrix shows the possible matching of people to tasks.

	Task 1	Task 2	Task 3	Task 4	Task 5	Task 6
\boldsymbol{A}	0	1	0	1	0	0
\boldsymbol{B}	1	0	1	0	1	0
\boldsymbol{C}	0	0	1	0	1	1
\boldsymbol{D}	0	0	0	1	0	0
\boldsymbol{E}	0	1	0	0	0	1
\boldsymbol{F}	0	0	0	1	1	0

(a) Show this information on a bipartite graph.
(b) At first F insists on being matched to task 4. Explain why, in this case, a complete matching is impossible.
(c) To find a complete matching F agrees to be assigned to either task 4 or task 5 .

Initially B is matched to task $3, C$ to task $6, E$ to task 2 and F to task 4 .
From this initial matching, use the maximum matching algorithm to obtain a complete matching. List your complete matching.

