Decision 1 Shortest Path Questions

5 [Figure 1, printed on the insert, is provided for use in this question.]
The network shows the times, in minutes, to travel between 10 towns.

(a) Use Dijkstra's algorithm on Figure 1 to find the minimum time to travel from A to J .
(6 marks)
(b) State the corresponding route.
(1 mark)

7 A connected graph \mathbf{G} has m vertices and n edges.
(a) (i) Write down the number of edges in a minimum spanning tree of \mathbf{G}.
(ii) Hence write down an inequality relating m and n.
(2 marks)
(b) The graph \mathbf{G} contains a Hamiltonian cycle. Write down the number of edges in this cycle.
(c) In the case where \mathbf{G} is Eulerian, draw a graph of \mathbf{G} for which $m=6$ and $n=12$.

3 [Figure 1, printed on the insert, is provided for use in this question.]
The following network represents the footpaths connecting 12 buildings on a university campus. The number on each edge represents the time taken, in minutes, to walk along a footpath.

(a) (i) Use Dijkstra's algorithm on Figure 1 to find the minimum time to walk from A to L.
(ii) State the corresponding route.
(1 mark)
(b) A new footpath is to be constructed. There are two possibilities:
from A to D, with a walking time of 30 minutes; or from A to I, with a walking time of 20 minutes.

Determine which of the two alternative new footpaths would reduce the walking time from A to L by the greater amount.

