FP1 Complex Number Answers

5(a)(i)	Full expansion of product	M1		
	Use of $i^2 = -1$	m1		
	$\left(2 + \sqrt{5}i\right)\left(\sqrt{5} - i\right) = 3\sqrt{5} + 3i$	A1	3	$\sqrt{5}\sqrt{5} = 5$ must be used – Accept not fully simplified
(ii)	$z^* = x - iy (= \sqrt{5} + i)$ Hence result	M1		Tony ship lifet
	Hence result	A1	2	Convincingly shown (AG)
(b)(i)	Other root is $\sqrt{5} + i$	B1	1	
_				

6(a)	$(z+i)^* = x - iy - i$	B2	2	
(b)	$\dots = 2ix - 2y + 1$	M1		$i^2 = -1$ used at some stage
	Equating R and I parts	M1		involving at least 5 terms in all
	x = -2y + 1, -y - 1 = 2x	A1√		ft one sign error in (a)
	z = -1 + i	m1A1√	5	ditto; allow $x = -1$, $y = 1$
	Total		7	

	Total		10	
	$(1+i)^3 + 2(1+i) - 4i$ = (-2+2i)+(2-2i) = 0	A1	2	convincingly shown (AG)
(iii)	$(1+i)^3 + 2(1+i) - 4i$	M1		with attempt to evaluate
(ii)	$(1+i)^3 = 1+3i-3-i = -2+2i$	M1A1	2	M1 if $i^2 = -1$ used
(b)(i)	$(1+x)^3 = 1 + 3x + 3x^2 + x^3$	M1A1	2	M1A0 if one small error
(ii)	Roots are $1 \pm 4i$	M1A1	2	M1 for correct method
1(a)(i)	Roots are ± 4i	M1A1	2	M1 for one correct root or two correct factors

3(a)	Use of $z^* = x - iy$ $z - 3iz^* = x + iy - 3ix - 3y$ R = x - 3y, $I = -3x + y$	M1 m1 A1	3	Condone sign error here Condone inclusion of i in I Allow if correct in (b)
(b)	x-3y = 16, -3x + y = 0 Elimination of x or y $z = -2 - 6i$	M1 m1 A1F	3	Accept $x = -2$, $y = -6$; ft $x + 3y$ for $x - 3y$
	Total		6	