FP1 Conics Answers

(ii)	$x = \frac{25}{4}$ Equal roots \Rightarrow tangency	Total	E1	2 12	but B0 if other values given as well Accept 'It's a tangent'
(ii)	4			•	but B0 if other values given as well
(ii)	$x = \frac{25}{1}$		21		
	1		B1		No need to mention repeated root,
	10x - 200x + 023 = 0			5	continuingly shown (AO)
	Fractions correctly cleared $16x^2 - 200x + 625 = 0$		ml Al	3	convincingly shown (AG)
(d)(i)			M1		
				-	
(c)	Required tangent is $x = 5$		B1F	1	ft wrong value in (b)
	Intersections at $(\pm 5, 0)$		B1	3	
	Both branches correct		B1		With implied asymptotes
(b)	One branch generally correct		B1		Asymptotes not needed
	$\rightarrow y = \pm 3\sqrt{3}$			5	
	$ \Rightarrow y^2 = 27 \Rightarrow y = \pm 3\sqrt{3} $		A1	3	
			A1		PI
8(a)	$x = 10 \Longrightarrow 4 - \frac{y^2}{9} = 1$		M1		
	2	I			I
		Total		6	
	2 units in positive x direction		A1 A1	4	
(b)	$(x-2)^2 - y^2 = 1$ Translation in x direction	I	M1A1		
	scale-factor $\frac{1}{2}$ parallel to y axis			2	
7(a)	Stretch parallel to y axis		B1 B1	2	
	Otractal as a 11-1 to the	I	D1	1	
]	Fotal		15	
	So line does not intersect curve		A1	3	
(iv)		1	M1A1	-	OE
(111)	x = -6x + 9 = 0 x = 3, y = 6		Al	2	
(iii)	ie if $-48c + 144 = 0$ so $c = 3$ $x^2 - 6x + 9 = 0$		A1 M1	2	
(ii)			M1	2	
	Hence result		A1	3	convincingly shown (AG)
	= 12x		M1		
(c)(i)	$(x+c)^2 = x^2 + 2cx + c^2$		B1		
(ii)			B1	1	
	Equation is $(y-2)^2 = 12x$		B1√	2	ft $y + 2$ for $y - 2$
(b)(i)	<u> </u>		B1	2	
8(a)	Correct at origin		M1 A1	2	
S(a)	Good attempt at sketch	1	M1		

	Total		15	
		B2	3	Curve to right of line Curves must touch the line in approx correct positions SC 1/3 if both curves are incomplete but touch the line correctly
(e)		B1		Curve to left of line
(d)	Tgt $\Rightarrow 4(k+4)^2 - 12(k^2+6) = 0$ $\Rightarrow k^2 - 4k + 1 = 0$ $\Rightarrow k = 2\pm\sqrt{3}$	M1 m1A1 A1	4	OE
(c)	Correct elimination of y Correct expansion of squares Correct removal of denominator Answer convincingly established	M1 M1 M1 A1	4	AG
(b)	Equation is $\frac{(x-k)^2}{2} + y^2 = 1$	M1A1	2	M1 if only one small error, eg $x + k$ for $x - k$
9(a)	Intersections $(\pm\sqrt{2}, 0)$, $(0, \pm 1)$	B1B1	2	Allow B1 for $\left(\sqrt{2}, 0\right)$, $(0, 1)$