FP1 Numerical Solutions of Equations Answers

l(a)	f(0.5) = -0.875, f(1) = 1		B1		
	Change of sign, so root between		E1	2	
(b)	Complete line interpolation method		M2,1		M1 for partially correct method
	Estimated root = $\frac{11}{15} \approx 0.73$		A1	3	Allow $\frac{11}{15}$ as answer
		Total		5	
	st increment is 0.2 lg 2 ≈ 0.06021		M1 A1		or 0.2 lg 2.1 or 0.2 lg 2.2 PI
	$z = 2.2 \Rightarrow y \approx 3.06021$		A1√		PI; ft numerical error
2	$x = 2.2 \Rightarrow y \approx 3.06021$ and increment is 0.2 lg 2.2 $x \approx 0.06848$		A1√ m1 A1		PI; ft numerical error consistent with first one PI

(b)(i) (ii)	$x^{2}(x+1) = 1$, hence result	B1 M1A1√	1	convincingly shown (AG)
(c)	$x_2 = 1 - \frac{1}{5} = \frac{4}{5}$	A1√	3	ft c's value of f'(1)
(c)	$Area = \int_{0}^{\infty} x^{-2} dx$	M1		
	$\dots = \left[-x^{-1} \right]_{1}^{\infty}$	M1		Ignore limits here
	= 01 = 1	A1	3	

2(a)	f(1.6) = -1.304, f(1.8) = 0.632	B1,B1		Allow 1 dp throughout
	Sign change, so root between	E1	3	
(b)	f(1.7) considered first	M1		
	f(1.7) = -0.387, so root > 1.7	A1		
	$f(1.75) = 0.109375$, so root ≈ 1.7	m1A1	4	m1 for f(1.65) after error
	Total		7	