FP1 Conics Questions

8 A curve has equation $y^{2}=12 x$.
(a) Sketch the curve.
(b) (i) The curve is translated by 2 units in the positive y direction. Write down the equation of the curve after this translation.
(2 marks)
(ii) The original curve is reflected in the line $y=x$. Write down the equation of the curve after this reflection.
(l mark)
(c) (i) Show that if the straight line $y=x+c$, where c is a constant, intersects the curve $y^{2}=12 x$, then the x-coordinates of the points of intersection satisfy the equation

$$
x^{2}+(2 c-12) x+c^{2}=0 \quad(3 \text { marks })
$$

(ii) Hence find the value of c for which the straight line is a tangent to the curve.
(2 marks)
(iii) Using this value of c, find the coordinates of the point where the line touches the curve.
(2 marks)
(iv) In the case where $c=4$, determine whether the line intersects the curve or not.
(3 marks)

7 (a) Describe a geometrical transformation by which the hyperbola

$$
x^{2}-4 y^{2}=1
$$

can be obtained from the hyperbola $x^{2}-y^{2}=1$.
(2 marks)
(b) The diagram shows the hyperbola H with equation

$$
x^{2}-y^{2}-4 x+3=0
$$

By completing the square, describe a geometrical transformation by which the hyperbola H can be obtained from the hyperbola $x^{2}-y^{2}=1$.

8 A curve C has equation

$$
\frac{x^{2}}{25}-\frac{y^{2}}{9}=1
$$

(a) Find the y-coordinates of the points on C for which $x=10$, giving each answer in the form $k \sqrt{3}$, where k is an integer.
(b) Sketch the curve C, indicating the coordinates of any points where the curve intersects the coordinate axes.
(c) Write down the equation of the tangent to C at the point where C intersects the positive x-axis.
(d) (i) Show that, if the line $y=x-4$ intersects C, the x-coordinates of the points of intersection must satisfy the equation

$$
16 x^{2}-200 x+625=0
$$

(ii) Solve this equation and hence state the relationship between the line $y=x-4$ and the curve C.

9 [Figure 3, printed on the insert, is provided for use in this question.]
The diagram shows the curve with equation

$$
\frac{x^{2}}{2}+y^{2}=1
$$

and the straight line with equation

$$
x+y=2
$$

(a) Write down the exact coordinates of the points where the curve with equation $\frac{x^{2}}{2}+y^{2}=1$ intersects the coordinate axes.
(b) The curve is translated k units in the positive x direction, where k is a constant. Write down, in terms of k, the equation of the curve after this translation.
(c) Show that, if the line $x+y=2$ intersects the translated curve, the x-coordinates of the points of intersection must satisfy the equation

$$
3 x^{2}-2(k+4) x+\left(k^{2}+6\right)=0
$$

(d) Hence find the two values of k for which the line $x+y=2$ is a tangent to the translated curve. Give your answer in the form $p \pm \sqrt{q}$, where p and q are integers.
(e) On Figure 3, show the translated curves corresponding to these two values of k.

