FP1 Numerical Solutions of Equations Questions

1 (a) Show that the equation

$$
x^{3}+2 x-2=0
$$

has a root between 0.5 and 1 .
(b) Use linear interpolation once to find an estimate of this root. Give your answer to two decimal places.

2 A curve satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\log _{10} x
$$

Starting at the point $(2,3)$ on the curve, use a step-by-step method with a step length of 0.2 to estimate the value of y at $x=2.4$. Give your answer to three decimal places.
(b) The diagram shows the graphs of

$$
y=\frac{1}{x^{2}} \quad \text { and } \quad y=x+1 \quad \text { for } \quad x>0
$$

The graphs intersect at the point P.
(i) Show that the x-coordinate of P satisfies the equation $\mathrm{f}(x)=0$, where f is the function defined in part (a).
(ii) Taking $x_{1}=1$ as a first approximation to the root of the equation $\mathrm{f}(x)=0$, use the Newton-Raphson method to find a second approximation x_{2} to the root.

2 (a) Show that the equation

$$
x^{3}+x-7=0
$$

has a root between 1.6 and 1.8.
(b) Use interval bisection twice, starting with the interval in part (a), to give this root to one decimal place.

