FP3 Introduction to Differential Equations Answers

3(a)
(b)
$\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(x^{2}-1\right) y\right]=2 x y+\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}$
Differentiating $\left(x^{2}-1\right) y=c$ wrt x leads to $2 x y+\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$\Rightarrow y=\frac{c}{x^{2}-1}$ is a soln. of
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=0$
(c) $\Rightarrow y=\frac{c}{x^{2}-1}$ is a soln with one arb. constant of $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=0$
$\Rightarrow y=\frac{c}{x^{2}-1}$ is a CF of the DE
GS is $\mathrm{CF}+\mathrm{PI}$
$y=\frac{c}{x^{2}-1}+x^{3}-x$

A1	3	Be generous

\qquad
Must be using 'hence'; CF and PI functions of x only
CSO
Must have explicitly considered the link between one arbitrary constant and the GS of a first order differential equation.

3(a) (b)	$\begin{aligned} & \text { IF is } \exp \left(\int \frac{2}{x} \mathrm{~d} x\right) \\ & =\mathrm{e}^{2 \ln x} \\ & =x^{2} \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}\left[y x^{2}\right]=3 x^{2}\left(x^{3}+1\right)^{\frac{1}{2}} \\ & \Rightarrow y x^{2}=\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}+A \\ & \Rightarrow 4=\frac{2}{3}(9)^{\frac{3}{2}}+A \\ & \Rightarrow A=-14 \\ & \Rightarrow y=x^{-2}\left\{\frac{2}{3}\left(x^{3}+1\right)^{\frac{3}{2}}-14\right\} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { M1A1 } \\ \text { m1 } \\ \text { A1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	6	And with integration attempted CSO AG be convinced PI $k\left(x^{3}+1\right)^{\frac{3}{2}}$ Condone missing ' A ' Use of boundary conditions to find constant Any correct form
	Total		9	
3 IF is $\mathrm{e}^{\int \tan x d x}$$\begin{aligned} & =\mathrm{e}^{-\ln \cos x}=\mathrm{e}^{\ln \sec x} \\ & =\sec x \\ & \frac{\mathrm{~d}}{\mathrm{~d} x}(y \sec x)=\sec ^{2} x \\ & y \sec x=\int \sec ^{2} x \mathrm{~d} x \\ & y \sec x=\tan x+c \\ & y=3 \operatorname{when} x=0 \Rightarrow 3 \sec 0=0+c \\ & c=3 \Rightarrow y \sec x=\tan x+3 \end{aligned}$		$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1ft } \\ \text { M1A1 } \\ \\ \text { A1 } \\ \text { m1 } \\ \text { A1 } \end{gathered}$	8	Accept either ft on earlier sign error Condone missing c OE ; condone solution finishing at $c=3$ provided no errors
	Total		8	

\qquad
\qquad

