FP3 Second Order Differential Equation Answers

1(a)	$\begin{aligned} & y=2 x+\sin 2 x \Rightarrow y^{\prime}=2+2 \cos 2 x \\ & \Rightarrow y^{\prime \prime}=-4 \sin 2 x \\ & -4 \sin 2 x-5(2+2 \cos 2 x)+4(2 x+\sin 2 x)= \\ & 8 x-10-10 \cos 2 x \end{aligned}$	M1 A1 A1	3	Need to attempt both y^{\prime} and $y^{\prime \prime}$ CSO AG Substitute. and confirm correct
(b)	$\begin{aligned} & \text { Auxiliary equation } m^{2}-5 m+4=0 \\ & m=4 \text { and } 1 \\ & \text { CF: } A \mathrm{e}^{4 x}+B \mathrm{e}^{x} \\ & \text { GS: } y=A \mathrm{e}^{x x}+B \mathrm{e}^{x}+2 x+\sin 2 x \\ & x=0, y=2 \Rightarrow \quad 2=A+B \\ & x=0, y^{\prime}=0 \Rightarrow \quad 0=4 A+B+4 \end{aligned}$	M1 A1 M1 B1 $\sqrt{ }$ B1 $\sqrt{ }$ B1 \checkmark	4	Their CF $+2 x+\sin 2 x$ Only ft if exponentials in GS Only ft if exponentials in GS and differentiated four terms at least
	Solving the simultaneous equations gives $A=-2$ and $B=4$ $y=-2 \mathrm{e}^{4 x}+4 \mathrm{e}^{x}+2 x+\sin 2 x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	4	
	Total		11	

6(a)
$u=\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}$
LHS of $\mathrm{DE} \Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y$ LHS: $\frac{\mathrm{d} u}{\mathrm{~d} x}+2(u-2 y)+4 y$
$\Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}+2 u=\mathrm{e}^{-2 x}$
(b)

IF is $\mathrm{e}^{\int 2 \mathrm{dx}}=\mathrm{e}^{2 x}$
$\frac{\mathrm{d}}{\mathrm{d} x}\left[u \mathrm{e}^{2 x}\right]=1$
$\Rightarrow u \mathrm{e}^{2 x}=x+A$
$\Rightarrow u=x \mathrm{e}^{-2 x}+A \mathrm{e}^{-2 x}$
Alternative : Those using CF+PI
Auxiliary equation,
$m+2=0 \Rightarrow u_{\text {CF }}=A \mathrm{e}^{-2 x}$
For $u_{P I}$ try $u_{P I}=k x \mathrm{e}^{-2 x} \Rightarrow$
$k \mathrm{e}^{-2 x}-2 k x \mathrm{e}^{-2 x}+2 k x \mathrm{e}^{-2 x}\left\{=\mathrm{e}^{-2 x}\right\}$
$\Rightarrow k=1 \Rightarrow u_{P I}=x \mathrm{e}^{-2 x}$
$\Rightarrow u_{G S}=A \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x}$
(c)
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=x \mathrm{e}^{-2 x}+A \mathrm{e}^{-2 x}$
IF is $\mathrm{e}^{\int 2 \mathrm{~d} x}=\mathrm{e}^{2 x}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d} x}\left[y \mathrm{e}^{2 x}\right]=x+A$
$\Rightarrow y \mathrm{e}^{2 x}=\frac{x^{2}}{2}+A x+B$
$\Rightarrow y=\mathrm{e}^{-2 x}\left(\frac{x^{2}}{2}+A x+B\right)$

M1		2 terms correct
A1		
M1		Substitution into LHS of DE as far as no derivatives of y
A1	4	CSO AG
B1		
M1 A1		
A1		
A1	5	
B1		LHS
M1		
A1 (b) to reach a $1^{\text {st }}$ order DE in y and x		
A1 \checkmark		
A1 \checkmark		

Total

1(a)	$y_{\mathrm{PI}}=k x^{2} \mathrm{e}^{5 x} \Rightarrow y^{\prime}=2 k x \mathrm{e}^{5 x}+5 k x^{2} \mathrm{e}^{5 x}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Product rule to differentiate $x^{2} \mathrm{e}^{5 x}$
	$\Rightarrow y^{\prime \prime}=2 k \mathrm{e}^{5 x}+10 k x \mathrm{e}^{5 x}+10 k x \mathrm{e}^{5 x}+25 k x^{2} \mathrm{e}^{5 x}$	Alft		
	$\begin{aligned} & \Rightarrow 2 k \mathrm{e}^{5 x}+20 k x \mathrm{e}^{5 x}+25 k x^{2} \mathrm{e}^{5 x} \\ & -10\left(2 k x \mathrm{e}^{5 x}+5 k x^{2} \mathrm{e}^{5 x}\right)+25 k x^{2} \mathrm{e}^{5 x}=6 \mathrm{e}^{5 x} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Substitution into differential equation
	$2 k=6 \Rightarrow k=3$	Alft	6	Only ft if $x \mathrm{e}^{5 x}$ and $x^{2} \mathrm{e}^{5 x}$ terms all cancel out
(b)	Aux. eqn. $m^{2}-10 m+25=0 \Rightarrow m=5$	B1		PI
	CF is $(A+B x) \mathrm{e}^{5 x}$	M1		
	GS $y=(A+B x) \mathrm{e}^{5 x}+3 x^{2} \mathrm{e}^{5 x}$	$\begin{gathered} \text { M1 } \\ \text { A1ft } \\ \hline \end{gathered}$	4	Their CF + their/our PI ft only on wrong value of k
	Total		10	
5(a)	$\begin{aligned} & u=\frac{\mathrm{d} y}{\mathrm{~d} x}+x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+1 \\ & \left(x^{2}-1\right)\left(\frac{\mathrm{d} u}{\mathrm{~d} x}-1\right)-2 x(u-x)=x^{2}+1 \\ & \mathrm{DE} \Rightarrow\left(x^{2}-1\right) \frac{\mathrm{d} u}{\mathrm{~d} x}-2 x u=0 \\ & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{2 x u}{x^{2}-1} \end{aligned}$	M1A1		
		M1		Substitution into LHS of DE as far as no $y \mathrm{~s}$
		A1	4	CSO; AG
(b)	$\int \frac{1}{u} \mathrm{~d} u=\int \frac{2 x}{x^{2}-1} \mathrm{~d} x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Separate variables
	$\ln u=\ln \left\|x^{2}-1\right\|+\ln A$	A1A1		
	$u=A\left(x^{2}-1\right)$	A1	5	
(c)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}+x=A\left(x^{2}-1\right) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=A\left(x^{2}-1\right)-x \\ & y=A\left(\frac{x^{3}}{3}-x\right)-\frac{x^{2}}{2}+B \end{aligned}$	M1		Use (b) $(\neq 0)$ to form DE in y and x
		M1		Solution must have two different constants and correct method used to solve the DE
		A1ft	3	
	Total		12	

