FP3 Series & Limits Answers

2(a)	$\int xe^{-2x} dx = -\frac{1}{2}xe^{-2x} - \int -\frac{1}{2}e^{-2x} dx$	M1 A1		Reasonable attempt at parts
	$= -\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} \{+c\}$ $\int_{0}^{a} xe^{-2x} dx = -\frac{1}{2}ae^{-2a} - \frac{1}{4}e^{-2a} - (0 - \frac{1}{4})$	A1√		Condone absence of $+c$
	$\int_{0}^{a} x e^{-2x} dx = -\frac{1}{2} a e^{-2a} - \frac{1}{4} e^{-2a} - (0 - \frac{1}{4})$	M1		F(a) - F(0)
	$= \frac{1}{4} - \frac{1}{2} a e^{-2a} - \frac{1}{4} e^{-2a}$	A1	5	
(b)	$\lim_{a \to \infty} a^k e^{-2a} = 0$	В1	1	
(c)	$\int_{0}^{\infty} x e^{-2x} dx =$			
	$= \lim_{a \to \infty} \left\{ \frac{1}{4} - \frac{1}{2} a e^{-2a} - \frac{1}{4} e^{-2a} \right\}$	M1		If this line oe is missing then 0/2
	$= \frac{1}{4} - 0 - 0 = \frac{1}{4}$	A1√	2	On candidate's "1/4" in part (a). B1 must have been earned
	Total		8	

4(a) (b)(i)	$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 \dots$ f(x) = e ^{sin x} \Rightarrow f(0) = 1	B1 B1	1	
	$f'(x) = \cos x e^{\sin x}$ $\Rightarrow f'(0) = 1$	M1A1		
	$f''(x) = -\sin x e^{\sin x} + \cos^2 x e^{\sin x}$ f''(0) = 1	M1A1		Product rule used
	Maclaurin f (x)= f(0)+xf'(0)+ $\frac{x^2}{2}$ f''(0)			
	so 1 st three terms are $1 + x + \frac{1}{2}x^2$	A1	6	CSO AG
(ii)	$f'''(x) = \cos x(\cos^2 x - \sin x) e^{\sin x} +$ $+ \{2\cos x(-\sin x) - \cos x\} e^{\sin x}$	M1A1		
	$f'''(0) = 0$ so the coefficient of x^3 in the series is zero	A1	3	CSO AG SC for (b): Use of series

	Total		14	
	$\lim_{x \to 0} \frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} = -\frac{1}{3}$	A1√	4	On candidate's x^3 coefficient in (a) provided lower powers cancel
	$= \frac{-\frac{1}{3} + o(x)}{1 + o(x^2)}$			Condone if this step is missing
	$\frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} = \frac{-\frac{1}{3}x^3 + o(x^4)}{x^3}$	M1 A1		Series from (a) & (b) used Numerator kx^3 (+)
(c)	$\sin x \approx x$.	В1		Ignore higher power terms in sinx expansion
				expansionsmax of 4/9

5(a)
$$\Rightarrow \lim_{a \to \infty} \left(\frac{3 + \frac{2}{a}}{2 + \frac{3}{a}} \right) = \frac{3 + 0}{2 + 0} = \frac{3}{2}$$
(b)
$$\int_{1}^{\infty} \frac{3}{(3x + 2)} - \frac{2}{2x + 3} dx$$

$$= \left[\ln(3x + 2) - \ln(2x + 3) \right]_{1}^{\infty}$$

$$= \left[\ln\left(\frac{3x + 2}{2x + 3}\right) \right]_{1}^{\infty}$$

$$= \ln\left\{ \lim_{a \to \infty} \left(\frac{3a + 2}{2a + 3}\right) \right\} - \ln 1$$

$$= \ln\left\{ \lim_{a \to \infty} \left(\frac{3a + 2}{2a + 3}\right) \right\} - \ln 1$$

$$= \ln\frac{3}{2} - \ln 1 = \ln\frac{3}{2}$$
A1 5 CSO

7(a)(i)	$(1+y)^{-1} = 1 - y + y^2 \dots$	B1	1	
	$\sec x \approx \frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{24} \dots}$	В1		
	$= \left[1 - \frac{x^2}{2} + \frac{x^4}{24} \dots\right]^{-1} =$	M1		
	$\left\{1 - \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) + \left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2\right\}$	М1		
	$= \left\{ 1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + \dots \right\}$			
	$=1+\frac{x^2}{2};+\frac{5x^4}{24}$	A1;A1	5	AG be convinced
	Alternative: Those using Maclaurin			
	$f(x) = \sec x$	(7-4)		
	$f(0) = 1; \ \underline{f'(x) = \sec x \ \tan x}; \ \{f'(0) = 0\}$	(<u>B1</u>)		P. 1 . 1
	$f'(x) = \sec x \tan^2 x + \sec^3 x$; $f''(0) = 1$	(M1)		Product rule oe
	$f'''(x) = \sec x \tan^3 x + 5\tan x \sec^3 x;$	(m1)		Chain rule with product rule OE
	$f^{(iv)}(x) = \sec x \tan^4 x + 18\tan^2 x \sec^3 x \dots +5\sec^5 x \implies f^{(iv)}(0) = 5$			
	$\sec x \approx \text{printed result}$	(A2)		CSO AG
(b)	$f(x) = \tan x;$ $f(0) = 0; f'(x) = \sec^2 x; \{f'(0) = 1\}$	B1		
	$f''(x) = 2\sec x(\sec x \tan x); f''(0) = 0$			
	$f'''(x) = 4\sec x \tan x(\sec x \tan x) + 2\sec^4 x$	M1		Chain rule with product rule oe
Ì	f'''(0) = 2		Ì	
	$\tan x = 0 + 1x + 0x^2 + \frac{2}{3!}x^3 \dots = x + \frac{1}{3}x^3$	A1	3	CSO AG
	Alternative: Those using otherwise			
	$ = \frac{\sin x}{\cos x} \approx \left(x - \frac{x^3}{6}\right) \left(1 + \frac{x^2}{2}\right)$	(M1) (A1)		
	$= x + \frac{x^3}{2} - \frac{x^3}{6} \dots = x + \frac{1}{3}x^3 \dots$	(A1)		
(c)	$\left(\frac{x \tan 2x}{x}\right) = \frac{x\left(2x + o(x^3)\right)}{x}$	В1		$\tan 2x = 2x + \frac{1}{3}(2x)^3$
	$\left(\frac{x\tan 2x}{\sec x - 1}\right) = \frac{x\left(2x + o(x^3)\right)}{\frac{x^2}{2} + o(x^4)}$	M1		Condone $o(x^k)$ missing
	$=\frac{2+o(x^2)}{\frac{1}{2}+o(x^2)}$	M1		
	$\lim_{x \to 0} \left(\frac{x \tan 2x}{\sec x - 1} \right) = 4$	A1√	4	ft on $2k$ after B0 for $\tan 2x = kx + \dots$
	Total		13	
'	201112			

4(a) Integrand is not defined at
$$x = 0$$

(b)
$$\int x^{\frac{1}{2}} \ln x \, dx = 2x^{\frac{1}{2}} \ln x - \int 2x^{\frac{1}{2}} \left(\frac{1}{x}\right) dx$$

M1

A1

..... = $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}} (+c)$

A1

3 Condone absence of '+ c'

(c)
$$\int_0^c \frac{\ln x}{\sqrt{x}} \, dx = \lim_{a \to 0} \int_a^c \frac{\ln x}{\sqrt{x}} \, dx$$

$$= -2e^{\frac{1}{2}} - \lim_{a \to 0} \left[2a^{\frac{1}{2}} \ln a - 4a^{\frac{1}{2}}\right]$$

But
$$\lim_{a \to 0} a^{\frac{1}{2}} \ln a = 0$$

B1

Accept a general form e.g.
$$\lim_{x \to 0} x^k \ln x = 0$$

So
$$\int_0^c \frac{\ln x}{\sqrt{x}} \, dx$$
 exists and
$$= -2e^{\frac{1}{2}}$$

A1

4

(c)
$$e^{2x} = 1 + 2x + x^{2} + \frac{2}{3}x^{3}$$

$$= 1 + 2x + 2x^{2} + \frac{4}{3}x^{3} + \dots$$

$$= 1 + 2x + 2x^{2} + \frac{4}{3}x^{3} + \dots$$

$$= 1 + 2x + 2x^{2} + \frac{4}{3}x^{3} + \dots$$
B1
$$\frac{e^{x}(1 + 2x)^{\frac{1}{2}} - e^{2x}}{1 - \cos x} = \frac{1 + 2x + x^{2} + \frac{2}{3}x^{3} - \left[1 + 2x + 2x^{2} + \frac{4}{3}x^{3}\right]}{\frac{1}{2}x^{2} + \left\{o(x^{4})\right\}}$$

$$\lim_{x \to 0} \dots = \lim_{x \to 0} \frac{-x^{2} + \left\{o(x^{3})\right\}}{\frac{1}{2}x^{2} + \left\{o(x^{4})\right\}} = \frac{1}{2}$$
A1F
$$\lim_{x \to 0} \frac{-1 + o(x)}{\frac{1}{2} + o(x^{2})} = -2$$
A1F
$$4$$
If a slip but must see the intermediate stage

$$\begin{aligned} \mathbf{f}(\mathbf{a}) &(\mathbf{i}) & \mathbf{f}(x) = \ln \left(1 + \mathbf{e}^x\right) : \\ \mathbf{f}(0) &= \ln 2 & \text{B1} \\ \mathbf{f}'(x) &= \frac{\mathbf{e}^x}{1 + \mathbf{e}^x} & \mathbf{f}'(0) = \frac{1}{2} & \text{M1} \\ \mathbf{f}''(x) &= \frac{(1 + \mathbf{e}^x)\mathbf{e}^x - \mathbf{e}^x\mathbf{e}^x}{(1 + \mathbf{e}^x)^2} = \frac{\mathbf{e}^x}{(1 + \mathbf{e}^x)^2} & \text{M1} \\ \mathbf{f}'''(0) &= \frac{1}{4} & \text{Quotient rule OE} \end{aligned}$$
 Chain rule Quotient rule OE
$$\mathbf{f}'''(0) &= \frac{1}{4} & \text{So first three terms are:} \\ \mathbf{f}(x) &= \ln 2 + \frac{1}{2}x + \frac{1}{4}\frac{x^2}{2!} = \ln 2 + \frac{1}{2}x + \frac{1}{8}x^2 & \text{A1} & \text{6} & \text{CSO; AG} \\ \mathbf{f}''''(x) &= \frac{(1 + \mathbf{e}^x)^2 \mathbf{e}^x - \mathbf{e}^x \left[2(1 + \mathbf{e}^x)\mathbf{e}^x \right]}{(1 + \mathbf{e}^x)^4} & \text{M1} \\ \mathbf{f}''''(0) &= \frac{4 - 4}{2^4} = 0 & \text{A1} & \text{3} & \text{CSO; AG;} \\ \mathbf{so coefficient of } x^3 \text{ is zero} \end{aligned}$$

SC for those not using Maclaurin's theorem: maximum of 4/9

7(a)	0	B1	1	
(b)	$u = xe^{-x} + 1 \Rightarrow du = (e^{-x} - xe^{-x})dx$	M1		Attempts to find du
	$\int \frac{e^{-x}(1-x)}{xe^{-x}+1} dx = \int \frac{1}{u} du = \ln u + c$			
	$= \ln\left(x\mathrm{e}^{-x} + 1\right) \left\{+ c\right\}$	A1	2	Condone missing c
(c)	$\int \frac{1-x}{x+e^x} dx = \int \frac{e^{-x}(1-x)}{xe^{-x}+1} dx$	В1		
	$\int_{1}^{\infty} \frac{1-x}{x+e^{x}} dx = \lim_{a \to \infty} \left[\ln(xe^{-x} + 1) \right]_{1}^{a}$			
	$= \lim_{a \to \infty} \left\{ \ln \left(a e^{-a} + 1 \right) \right\} - \ln \left(e^{-1} + 1 \right)$	M1		For using part (b) and $F(B) - F(A)$
	$= \ln \left\{ \lim_{a \to \infty} \left(a e^{-a} + 1 \right) \right\} - \ln \left(e^{-1} + 1 \right)$			
	$= \ln 1 - \ln \left(e^{-1} + 1 \right) = -\ln \left(e^{-1} + 1 \right)$	M1 A1	4	For using limiting process
	Total		7	