FP3 Introduction to Differential Equations Questions

3 (a) Show that $y=x^{3}-x$ is a particular integral of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=5 x^{2}-1
$$

(b) By differentiating $\left(x^{2}-1\right) y=c$ implicitly, where y is a function of x and c is a constant, show that $y=\frac{c}{x^{2}-1}$ is a solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=0 \tag{3marks}
\end{equation*}
$$

(c) Hence find the general solution of

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x y}{x^{2}-1}=5 x^{2}-1
$$

3 (a) Show that $\sin x$ is an integrating factor for the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+(\cot x) y=2 \cos x
$$

(b) Solve this differential equation, given that $y=2$ when $x=\frac{\pi}{2}$.

3 (a) Show that x^{2} is an integrating factor for the first-order differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=3\left(x^{3}+1\right)^{\frac{1}{2}}
$$

(b) Solve this differential equation, given that $y=1$ when $x=2$.

3 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+(\tan x) y=\sec x
$$

given that $y=3$ when $x=0$.

