FP3 Numerical Methods for the Solution of First Order Differential Equations Questions

5 (a) The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=x \ln x+\frac{y}{x}
$$

and

$$
y(1)=1
$$

(i) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(1.1)$.
(ii) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a)(i) to obtain an approximation to $y(1.2)$, giving your answer to three decimal places.
(b) (i) Show that $\frac{1}{x}$ is an integrating factor for the first-order differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{1}{x} y=x \ln x
$$

(ii) Solve this differential equation, given that $y=1$ when $x=1$.
(iii) Calculate the value of y when $x=1.2$, giving your answer to three decimal places.

2 The function $y(x)$ satisfies the differential equation
where

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

$$
\mathrm{f}(x, y)=\frac{x^{2}+y^{2}}{x y}
$$

and

$$
y(1)=2
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(1.1)$.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.1$, to obtain an approximation to $y(1.1)$, giving your answer to four decimal places.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\ln \left(1+x^{2}+y\right)
$$

and

$$
y(1)=0.6
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.05$, to obtain an approximation to $y(1.05)$, giving your answer to four decimal places.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.05$, to obtain an approximation to $y(1.05)$, giving your answer to four decimal places.

2 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\sqrt{x^{2}+y^{2}+3}
$$

and

$$
y(1)=2
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(1.1)$, giving your answer to four decimal places.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.1$, to obtain an approximation to $y(1.1)$, giving your answer to four decimal places.

