FP3 Polar Coordinates Questions

6 (a) A circle C_{1} has cartesian equation $x^{2}+(y-6)^{2}=36$. Show that the polar equation of C_{1} is $r=12 \sin \theta$.
(4 marks)
(b) A curve C_{2} with polar equation $r=2 \sin \theta+5,0 \leqslant \theta \leqslant 2 \pi$ is shown in the diagram.

Calculate the area bounded by C_{2}.
(6 marks)
(c) The circle C_{1} intersects the curve C_{2} at the points P and Q. Find, in surd form, the area of the quadrilateral $O P M Q$, where M is the centre of the circle and O is the pole.

4 The diagram shows the curve C with polar equation

$$
r=6(1-\cos \theta), \quad 0 \leqslant \theta<2 \pi
$$

(a) Find the area of the region bounded by the curve C.
(b) The circle with cartesian equation $x^{2}+y^{2}=9$ intersects the curve C at the points A and B.
(i) Find the polar coordinates of A and B.
(ii) Find, in surd form, the length of $A B$.

2 A curve has polar equation $r(1-\sin \theta)=4$. Find its cartesian equation in the form $y=\mathrm{f}(x)$.

7 A curve C has polar equation

$$
r=6+4 \cos \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.
(b) The point P is the point on the curve C for which $\theta=\frac{2 \pi}{3}$.

The point Q is the point on C for which $\theta=\pi$.
Show that $Q P$ is parallel to the line $\theta=\frac{\pi}{2}$.
(c) The line $P Q$ intersects the curve C again at a point R.

The line $R O$ intersects C again at a point S.
(i) Find, in surd form, the length of $P S$.
(ii) Show that the angle $O P S$ is a right angle.

4 (a) Show that $(\cos \theta+\sin \theta)^{2}=1+\sin 2 \theta$.
(b) A curve has cartesian equation

$$
\left(x^{2}+y^{2}\right)^{3}=(x+y)^{4}
$$

Given that $r \geqslant 0$, show that the polar equation of the curve is

$$
r=1+\sin 2 \theta
$$

(c) The curve with polar equation

$$
r=1+\sin 2 \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

is shown in the diagram.

(i) Find the two values of θ for which $r=0$.
(ii) Find the area of one of the loops.

