FP3 Series \& Limits Questions

2 (a) Find $\int_{0}^{a} x \mathrm{e}^{-2 x} \mathrm{~d} x$, where $a>0$.
(b) Write down the value of $\lim _{a \rightarrow \infty} a^{k} \mathrm{e}^{-2 a}$, where k is a positive constant.
(c) Hence find $\int_{0}^{\infty} x \mathrm{e}^{-2 x} \mathrm{~d} x$.

4 (a) Use the series expansion

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots
$$

to write down the first four terms in the expansion, in ascending powers of x, of $\ln (1-x)$.
(b) The function f is defined by

$$
\mathrm{f}(x)=\mathrm{e}^{\sin x}
$$

Use Maclaurin's theorem to show that when $\mathrm{f}(x)$ is expanded in ascending powers of x :
(i) the first three terms are

$$
1+x+\frac{1}{2} x^{2}
$$

(ii) the coefficient of x^{3} is zero.
(c) Find

$$
\lim _{x \rightarrow 0} \frac{\mathrm{e}^{\sin x}-1+\ln (1-x)}{x^{2} \sin x}
$$

5 (a) Show that $\lim _{a \rightarrow \infty}\left(\frac{3 a+2}{2 a+3}\right)=\frac{3}{2}$.
(b) Evaluate $\int_{1}^{\infty}\left(\frac{3}{3 x+2}-\frac{2}{2 x+3}\right) \mathrm{d} x$, giving your answer in the form $\ln k$, where k is a rational number.

7 (a) (i) Write down the first three terms of the binomial expansion of $(1+y)^{-1}$, in ascending powers of y.
(ii) By using the expansion

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots
$$

and your answer to part (a)(i), or otherwise, show that the first three non-zero terms in the expansion, in ascending powers of x, of $\sec x$ are

$$
1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}
$$

(b) By using Maclaurin's theorem, or otherwise, show that the first two non-zero terms in the expansion, in ascending powers of x, of $\tan x$ are

$$
x+\frac{x^{3}}{3}
$$

(c) Hence find $\lim _{x \rightarrow 0}\left(\frac{x \tan 2 x}{\sec x-1}\right)$.

4 (a) Explain why $\int_{0}^{\mathrm{e}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$ is an improper integral.
(1 mark)
(b) Use integration by parts to find $\int x^{-\frac{1}{2}} \ln x \mathrm{~d} x$.
(c) Show that $\int_{0}^{\mathrm{e}} \frac{\ln x}{\sqrt{x}} \mathrm{~d} x$ exists and find its value.

6 The function f is defined by $\mathrm{f}(x)=(1+2 x)^{\frac{1}{2}}$.
(a) (i) Find $\mathrm{f}^{\prime \prime \prime}(x)$. (4 marks)
(ii) Using Maclaurin's theorem, show that, for small values of x,

$$
\mathrm{f}(x) \approx 1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}
$$

(4 marks)
(b) Use the expansion of e^{x} together with the result in part (a)(ii) to show that, for small values of x,

$$
\mathrm{e}^{x}(1+2 x)^{\frac{1}{2}} \approx 1+2 x+x^{2}+k x^{3}
$$

where k is a rational number to be found.
(c) Write down the first four terms in the expansion, in ascending powers of x, of $\mathrm{e}^{2 x}$.
(1 mark)
(d) Find

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}(1+2 x)^{\frac{1}{2}}-\mathrm{e}^{2 x}}{1-\cos x} \tag{4marks}
\end{equation*}
$$

6 (a) The function f is defined by

$$
\mathrm{f}(x)=\ln \left(1+\mathrm{e}^{x}\right)
$$

Use Maclaurin's theorem to show that when $\mathrm{f}(x)$ is expanded in ascending powers of x :
(i) the first three terms are

$$
\ln 2+\frac{1}{2} x+\frac{1}{8} x^{2}
$$

(ii) the coefficient of x^{3} is zero.
(b) Hence write down the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \left(\frac{1+\mathrm{e}^{x}}{2}\right)$.
(c) Use the series expansion

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots
$$

to write down the first three terms in the expansion, in ascending powers of x, of $\ln \left(1-\frac{x}{2}\right)$.
(1 mark)
(d) Use your answers to parts (b) and (c) to find

$$
\lim _{x \rightarrow 0}\left[\frac{\ln \left(\frac{1+\mathrm{e}^{x}}{2}\right)+\ln \left(1-\frac{x}{2}\right)}{x-\sin x}\right]
$$

(4 marks)

7 (a) Write down the value of

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x \mathrm{e}^{-x} \tag{1mark}
\end{equation*}
$$

(b) Use the substitution $u=x \mathrm{e}^{-x}+1$ to find $\int \frac{\mathrm{e}^{-x}(1-x)}{x \mathrm{e}^{-x}+1} \mathrm{~d} x$.
(c) Hence evaluate $\int_{1}^{\infty} \frac{1-x}{x+\mathrm{e}^{x}} \mathrm{~d} x$, showing the limiting process used.

