Mechanics 1 Projectiles Answers

5(a)	$s = ut + \frac{1}{2}at^2$			
	$s = ut + \frac{1}{2}at^{2}$ $0 = 2\frac{1}{2}ut - \frac{1}{2}gt^{2}$	M1 A1		full method required for time (equation of motion, or standard result)
	$0 = t \left(2 \frac{1}{2} u - \frac{1}{2} gt \right)$	m1		
	$t = \frac{5u}{g}$	A1	4	(if $g = 9.8$ used, lose last A1)
(b)	$OA = 6u \times \frac{5u}{g}$	M1		
	$=\frac{30u^2}{g}$	A1	2	cao
(c)	$\operatorname{speed}^2 = \left(6u\right)^2 + \left(2\frac{1}{2}u\right)^2$	M1		
	speed = $6\frac{1}{2}u$	A1	2	cao
(d)	Least speed, at top, $= 6u$	B1	1	
	Total		9	

	$\theta = 39.1^{\circ} \text{ or } 39.2^{\circ}$ accept \pm	A1F	2	FT use of candidates u and v and V
	0 20 18 at 20 2°]			_
•	18.39			Accept inverted ratio
(ii)	$\tan \theta = \frac{14.95}{18.39}$	M1		Use of candidate's u and v
	14.05			
				when $t = 3.1$
	$V = 23.7 \mathrm{ms}^{-1}$	A1F	5	FT use of candidate's u and v and new v
				t = 3.1)
	$V = \sqrt{(18.39)^2 + (-14.95)^2}$	M1		Use of candidate's u and new v (when
	$v = -14.95 \text{ ms}^{-1}$	A1		(Accept -15.0)
	vertical, $v = 24 \sin 40^{\circ} - 9.8 \times 3.1$	M1		Component attempted & acceleration = 9.8
(c)(i)	horizontal, $u = 24\cos 40^{\circ} = 18.39 \text{ ms}^{-1}$	B1		Seen anywhere in (c) accept 18.4
() (B		D1		6 1 1 () (104
				Accept 2 s.f. answer, AWRT 0.71-0.74
	h = 0.734 m	A1F	3	FT one slip e.g. +9.8 used
	2	A1		All correct
(b)	$h = 24 \sin 40^{\circ} \times 3.1 - \frac{1}{2} \times 9.8 \times 3.1^{2}$	M1		Component attempted & acceleration = 9.8
	t = 3.10 sec	A1	3	CAO
		A1		All correct
7(a)	$57 = 24\cos 40^{\circ} \times t$	M1		Component attempted and acceleration $= 0$

	t = 3.087 + 3.280 = 6.37 Total	(A2)	10	Correct total
	$t_2 = 3.280$	(A1)		Time to go up
	$t_1 = 3.087$	(A1)		Correct time
	$46.7 = 4.9t_1^2$	(dM1)		Equation for time to go down
	Alt	(M1)		Finding two times
	t = 6.37	A2	6	Correct solution selected
	= 0.192 or 6.37			
	2×4.9			
	$t = \frac{50\sin 40^{\circ} \pm \sqrt{(50\sin 40^{\circ})^{2} - 4 \times 4.9 \times 6}}{2 \times 4.9}$	dM1		Solving quadratic
	$0 = 4.9t^2 - 50\sin 40^\circ t + 6$	A1		Correct equation
				with any signs
(b)	$6 = 50\sin 40^{\circ}t - 4.9t^2$	M1A1		Forming a quadratic in t. Correct terms
	= 52.7 ALLOW 52.6	(A1)	4	Correct h
	$h = 50\sin 40^{\circ} \times 3.280 - \frac{1}{2} \times 9.8 \times 3.280^{2}$			velocity
	$t = \frac{50\sin 40^{\circ}}{9.8} = 3.280$	(dM1)		Expression for h with a component of
	50 sin 40°	(A1)		of velocity Correct t
	$Alt 0 = 50 \sin 40^\circ - 9.8t$	(M1)		Equation for t with $v = 0$ and a component
		A1		Correct h
	$h = \frac{(50\sin 40^\circ)^2}{2 \times 9.8} = 52.7$	dM1		component of velocity. Correct equation Solving for <i>h</i>
7(a)	$0^2 = (50\sin 40^\circ)^2 + 2 \times (-9.8)h$	M1A1		Equation for h with $v = 0$ and a

7(a)	A particle or no spin	B1		First assumption
	No air resistance or no wind or only	B1	2	Second assumption
	gravity acting			If any of the 2
				If more than 2 assumptions given, subtract one mark for each incorrect additional
				assumption
				•
(b)	$0 = 25\sin 40^{\circ}t - 4.9t^2$	M1		Equation for time of flight
		A1		Correct equation
	$0 = t(25\sin 40^{\circ} - 4.9t)$	dM1		Solving for t
	$t = 0$ or $t = \frac{25\sin 40^{\circ}}{}$			
	4.9			
	Time of flight $= 3.28 \text{ s}$	A1	4	AG Correct final answer from correct
				working
	_			(Verification method M1A1M1A0)
(c)	$s = 3.28 \times 25 \cos 40^{\circ} = 62.8 \text{ m}$	M1		Finding range
		A1	2	Correct range
(d)	25 ms ⁻¹ at 40° below the horizontal	B1		Speed
		B1	2	Direction
(e)	$v_{\text{min}} = 25 \cos 40^{\circ} = 19.2 \text{ ms}^{-1}$	M1		Horizontal component of velocity
	111111	A1	2	Correct speed
	OR			Accept 19.1 ms ⁻¹
	$v_{\min} = \frac{62.807}{3.2795} = 19.2 \text{ ms}^{-1}$			
	Total		12	