Mechanics 2 Calculus in Kinematics

	$s = t^2 + 12e^{-t} - 12$ Total	A1	4	Correct final expression
	$s = t^{2} + 12e^{-t} + c$ $s = 0, t = 0 \Rightarrow c = -12$ $s = t^{2} + 12e^{-t} - 12$	dM1		Finding c.
(~)	s = t + 12e + c	A1		Correct expression with or without c
(b)	$a = t^2 + 12a^{-t} + a$	M1		Integrating, with at least one term correct
		B1	3	Correct inequalities
· í		B1		For 14
(ii)	$2 < a \le 14$	B1		For 2
(u)(1)	<i>u</i> – 2 + 12 <i>e</i>	A1	2	Correct velocity
3(a)(i)	$a = 2 + 12e^{-t}$	M1		Differentiating, with at least one term correct.

		Total		8	
				5	
	$\mathbf{v} = (2\sin t + 2)\mathbf{i} + (5\cos t + 5)\mathbf{j}$		A 1		Correct final answer
	$\mathbf{v}(0) = 2\mathbf{i} + 10\mathbf{j} \Rightarrow c_1 = 2, c_2 = 5$		dM1		Finding constants of integration
					Both of above with or without constants
			A1		Correct j component
	= $(2\sin t + c_1)\mathbf{i} + (5\cos t + c_2)\mathbf{j}$		A1		Correct i component
(b)	$\mathbf{v} = \int 2\cos t dt \mathbf{i} + \int -5\sin t dt \mathbf{j}$		M1		Integrating
<i>a</i> >			3.61		
			A1	3	Correct magnitude
	$F(0) = 6 \times 2i$ so $F = 12 \text{ N}$		A1		Correct F
5(a)	$\mathbf{F} = 12\cos t\mathbf{i} - 30\sin t\mathbf{j}$		M1		Use of $\mathbf{F} = m\mathbf{a}$

	Total		12	
	$F = 6 \times 106.45 = 639 \text{ N}$			
	$a = \sqrt{46^2 + 96^2} = 106.45$ $F = 6 \times 106.45 = 639 \text{ N}$			
		Ai		correct magnitude
	$F = \sqrt{276^2 + 576^2} = 639 \text{ N}$	M1 A1	3	finding magnitude correct magnitude
(d)	$\mathbf{F} = 6(46\mathbf{i} - 96\mathbf{j}) = 276\mathbf{i} - 576\mathbf{j}$	M1		apply Newton's second law correctly
(4)	E - 6(46; 06;) - 276; 576;	MI		and Navitan's assent law connective
	$\mathbf{a}(4) = 46\mathbf{i} - 96\mathbf{j}$	A1	3	correct acceleration at time t
(c)	$\mathbf{a} = (12t - 2)\mathbf{i} - 24t\mathbf{j}$ $\mathbf{a}(4) = 46\mathbf{i} - 96\mathbf{j}$	M1 A1		differentiating their velocity correct acceleration at time t
(ii)	Travelling due south	AIII	1	correct description (Follow through from $\mathbf{v} = \pm k\mathbf{j}$)
(::)	Travalling due couth	A1ft	1	correct description (Follow) through from
(6)(1)	$\mathbf{v}\left(\frac{1}{3}\right) = \left(\frac{6}{9} - \frac{2}{3}\right)\mathbf{i} + \left(1 - \frac{12}{9}\right)\mathbf{j} = -\frac{1}{3}\mathbf{j}$	A1	2	correct velocity
(b)(i)	(1) $(6 2)$, $(1 12)$, $(1 12)$	M1		substituting the value for t into their \mathbf{v}
		A1	3	second component correct
-()	V = (01 21)1 (1 121)j	A1		one component correct
1(a)	$\mathbf{v} = (6t^2 - 2t)\mathbf{i} + (1 - 12t^2)\mathbf{j}$	M1		differentiating both components

5(a)	$F = 800 + \frac{1200}{20}t = 800 + 60t$ $1200a = 800 + 60t$ $a = \frac{800}{1200} + \frac{60}{1200}t = \frac{2}{3} + \frac{t}{20}$ AG	M1 A1 B1 dM1	5	finding the gradient of the line correct gradient correct intercept using Newton's second law on two terms correct result from correct working
(b)	$v = \int \frac{2}{3} + \frac{t}{20} dt = \frac{2t}{3} + \frac{t^2}{40} + c$ $v = 0, t = 0 \Rightarrow c = 0$ $v = \frac{2t}{3} + \frac{t^2}{40}$	M1 A1		integrating correct integral with or without c
		Al	3	showing $c = 0$
(c)	$s = \int_0^{20} \frac{2t}{3} + \frac{t^2}{40} dt$	M1 A1		integrating correct integral, with or without <i>c</i> .
	$= \left[\frac{t^2}{3} + \frac{t^3}{120}\right]_0^{20}$	dM1		use of both limits or finding c
	= 200 m	A1	4	correct distance
(d)	The $\frac{2t}{3}$ term would change, because only the constant term in the force would	В1		correct term
	change. When integrated this becomes the <i>t</i> term in the velocity.	B1	2	correct explanation
	Total		14	

	Tota	1	12	
	$ \mathbf{F} = 50(\mathbf{N})$	A1	5	
	$ \mathbf{F} = \sqrt{50^2 \cos^2 t + 50^2 \sin^2 t}$	M1		No unit vectors
	$\mathbf{F} = -50\cos t \mathbf{i} - 50\sin t \mathbf{j}$	M1		
(c)	$\mathbf{a} = -2\cos t \mathbf{i} - 2\sin t \mathbf{j}$	M1A1		
		A1	3	k
(6)	V = 25mr1 + 2005r j 0.4k	A1		Trig
(b)	$\mathbf{v} = -2\sin t \mathbf{i} + 2\cos t \mathbf{j} - 0.4\mathbf{k}$	M1		Differentiation
		B1	2	
(iii)	$t=2\pi,$ $t=4\pi$	B1		
(ii)	$t = 2\pi, \ \mathbf{r} = 2\mathbf{i} + 7.49\mathbf{k}$	B1	1	Or $\mathbf{r} = 2\mathbf{i} + (10 - 0.8\pi)\mathbf{k}$ accept 7.5 \mathbf{k}
			•	
5(a)(i)	$t = 0$, $\mathbf{r} = 2\mathbf{i} + 10\mathbf{k}$	B1	1	

3(a)	Using $F = ma$:			
	$2400\mathbf{i} - 4800t\mathbf{j} = 800\mathbf{a}$	M1		
	$\mathbf{a} = 3\mathbf{i} - 6t\mathbf{j}$	A1	2	
(b)	$\mathbf{v} = \int \mathbf{a} dt$ $= 3t\mathbf{i} - 3t^2\mathbf{j} + \mathbf{c}$	M1		
. ,	$= 3ti - 3t^2i + c$	A1		Condone no '+ c'
	Sil Silj C	Al		Condone no · c
	When $t = 0$, $\mathbf{v} = 6\mathbf{i} + 30\mathbf{j}$			
	$\therefore \mathbf{c} = 6\mathbf{i} + 30\mathbf{j}$	M1		Needs '+ c' above
	$ c = 6\mathbf{i} + 30\mathbf{j} v = (3t + 6)\mathbf{i} + (30 - 3t^2)\mathbf{j} $	A1	4	AG
(c)	$\mathbf{r} = \int \mathbf{v} dt$ $= \left(\frac{3}{2}t^2 + 6t\right)\mathbf{i} + (30t - t^3)\mathbf{j} + \mathbf{d}$	M1		
(-)	2			
	$=(\frac{3}{2}t^2+6t)\mathbf{i}+(30t-t^3)\mathbf{j}+\mathbf{d}$	A1,A1		A1 i term, A1 j term; condone no '+ d'
	2			
	When $t = 0$, $\mathbf{r} = 2\mathbf{i} + 5\mathbf{j}$			
	$\therefore \mathbf{d} = 2\mathbf{i} + 5\mathbf{j}$	M1		
	$\therefore \mathbf{r} = (\frac{3}{2}t^2 + 6t + 2)\mathbf{i} + (30t - t^3 + 5)\mathbf{j}$	A1	5	
	Total		11	
,		'		•