Mechanics 2 Centre of Mass

4 The diagram shows a uniform lamina $A B C D E F G H$.

(a) Explain why the centre of mass is 25 cm from $A H$.
(b) Show that the centre of mass is 4.375 cm from $H G$.
(c) The lamina is freely suspended from A. Find the angle between $A B$ and the vertical when the lamina is in equilibrium.
(d) Explain, briefly, how you have used the fact that the lamina is uniform.

4 A uniform T-shaped lamina is formed by rigidly joining two rectangles $A B C H$ and $D E F G$, as shown in the diagram.

(a) Show that the centre of mass of the lamina is 26 cm from the edge $A B$.
(b) Explain why the centre of mass of the lamina is 5 cm from the edge $G F$.
(c) The point X is on the edge $A B$ and is 7 cm from A, as shown in the diagram below.

The lamina is freely suspended from X and hangs in equilibrium.
Find the angle between the edge $A B$ and the vertical, giving your answer to the nearest degree.

2 A uniform lamina is in the shape of a rectangle $A B C D$ and a square $E F G H$, as shown in the diagram.

The length $A B$ is 20 cm , the length $B C$ is 30 cm , the length $D E$ is 5 cm and the length $E F$ is 10 cm .

The point P is the midpoint of $A B$ and the point Q is the midpoint of $H G$.

(a) Explain why the centre of mass of the lamina lies on $P Q$.
(1 mark)
(b) Find the distance of the centre of mass of the lamina from $A B$.
(c) The lamina is freely suspended from A.

Find, to the nearest degree, the angle between $A D$ and the vertical when the lamina is in equilibrium.

