Mechanics 2 Differential Equations

	of the water. The resistance force will directly oppose			First assumption
	the motion of the boat and be the only force that needs to be considered.	B1	2	second assumption
(b)	The boat is a particle. / There is no wind. / No air resistance.	B1	1	Appropriate assumption
(c)(i)	$80\frac{dv}{dt} = -20v$	M1		Use of Newton's second law, $\frac{dv}{dt}$ and 20v.
	$\frac{dv}{dt} = -\frac{v}{4}$	Al	2	Correct result
(ii)	$\int \frac{1}{v} dv = -\int \frac{1}{4} dt$ $\ln v = -\frac{t}{4} + c$	M1		Sep. of variables and forming integrals
	$\ln y = -\frac{t}{c} + c$	dM1		Integrating to get an ln v term
	$mv = -\frac{1}{4} + c$	A1		Correct integrals with or without c
	$v = Ae^{-\frac{t}{4}}$			
	$v = 12, t = 0 \Rightarrow A = 12$	dM1		Finding A or c
	$v = 12e^{-\frac{t}{4}}$	A 1	5	Correct final result
	Total		10	

7(a)	$20\frac{dv}{dt} = -10\sqrt{v}$ $\frac{dv}{dt} = -\frac{\sqrt{v}}{2}$ $\int \frac{1}{\sqrt{v}} dv = \int -\frac{1}{2} dt$ AG	M1 A1 dM1		applying Newton's second law with $\frac{dv}{dt}$ correct differential equation separating variables
	$dt = 2$ $\int \frac{1}{\sqrt{v}} dv = \int -\frac{1}{2} dt$ $2\sqrt{v} = -\frac{t}{2} + c$ $t = 0, v = 25 \Rightarrow c = 10$ $v = \left(\frac{20 - t}{4}\right)^{2}$	dM1 A1 dM1	7	integrating correct integrals with or without <i>c</i> finding the constant of integration correct final result from correct working
(b)	t = 20	B1	1	correct time
	Total		8	

7(a)	Max speed ≡zero acceleration used	M1		Implied	
	$\frac{\frac{72000}{60}}{\frac{72000}{60}} = k \times 60$	M1			
	k = 20	A1	3		
(b)(i)	$20v = -500 \frac{dv}{dt}$ $\frac{dv}{dt} = -\frac{v}{25}$	M1		see $\frac{dv}{dt}$, \pm	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{v}{25}$	A1	2		
(ii)	$25 \int \frac{dv}{v} = -\int dt$ $[25 \ln v]_{20}^{10} = -[t]_{0}^{t}$	M1 A1		M1 separating variables	
	$[25 \ln v]_{20}^{10} = -[t]_0^t$	A1		Alternative $25 \ln v = -t (+ c)$	A1
	$25\ln 10 - 25\ln 20 = -t$	m1 A1		$t = 0, v = 20, c = 25 \ln 20$ t = t, v = 10,	m1
	$t = 25 \ln 2$ or 17.3 or $-25 \ln \frac{1}{2}$	A1	6	$25\ln 10 = -t + 25\ln 20$ $t = 25\ln 2 \text{ or } 17.3$	A1 A1
	Tot	al	11		

	$v = U e^{-\lambda t}$ Total	A1	6	AG
	When $t = 0$, $v = U \Rightarrow C = U$	M1		Needs correct working
	$\int \frac{dv}{v} = -\lambda \int dt$ $\ln v = -\lambda t + c$ $v = C e^{-\lambda t}$	A1		Needs '+ c'
(b)	$\int \frac{\mathrm{d}v}{v} = -\lambda \int \mathrm{d}t$	M1		
	$\therefore \frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v$	A1	2	Note: no use of $m \Rightarrow$ no marks in (a)
	dt			AG
. (-)	Using $F = ma$: $-\lambda mv = ma = m \frac{dv}{dt}$	M1		Condone no '-'