Mechanics 2 Work, Energy, Power

1(a)	$KE = \frac{1}{2} \times 0.4 \times 8^2 = 12.8 \text{ J}$	M1 A1	2	Use of KE formula. Correct KE
(b)(i)	$KE = 12.8 + 0.4 \times 9.8 \times 6 = 36.32 \text{ J}$ AG	M1 A1	2	Calculation of GPE Correct KE from correct expression (Allow use of CA equations in solutions)
(ii)	$\frac{1}{2} \times 0.4 v^2 = 36.32$	M1 A1		Two term energy equation Correct energy equation
(iii)	$v = \sqrt{\frac{36.32 \times 2}{0.4}} = 13.5 \text{ ms}^{-1}$ No air resistance No resistance forces	A1	3	Correct speed
	Weight is the only force	B1	1	Appropriate assumption
	Total		8	

8F = 11.76 F = 1.47 N The magnitude of the force would <u>vary</u> with the speed of the ball.	M1 A1ft B1	2	using work done = Fd with $d = 8$ correct force accept 1.48 appropriate explanation	
		2	correct force	
$ \delta F = 11.70$	IVI I		Using Work done = Fa with $a = 8$	1
9E 11.76	MI		voine work dance Edwith de 0	
WD against resistance = $58.8 - 0.6 \times 9.8 \times 8$ = $11.76 = 11.8 \text{ J (to 3 sf)}$	M1 A1 A1	3	three term energy equation correct equation correct value	
$0.6 \times 9.8h = 58.8$ $h = \frac{58.8}{0.6 \times 9.8} = 10 \text{ m}$	M1 A1 A1	3	two term energy equation involving PE and previous energy correct equation correct height Note: Constant acceleration methods not accepted.	
$KE = \frac{1}{2} \times 0.6 \times 14^2 = 58.8 \text{ J}$	M1 A1	2	use of KE formula correct energy	
	$0.6 \times 9.8h = 58.8$ $h = \frac{58.8}{0.6 \times 9.8} = 10 \text{ m}$ WD against resistance $= 58.8 - 0.6 \times 9.8 \times 8$	$0.6 \times 9.8h = 58.8$ $h = \frac{58.8}{0.6 \times 9.8} = 10 \text{ m}$ $M1$ $A1$ $A1$ $A1$ $WD \text{ against resistance}$ $= 58.8 - 0.6 \times 9.8 \times 8$ $A1$	$0.6 \times 9.8h = 58.8$ $h = \frac{58.8}{0.6 \times 9.8} = 10 \text{ m}$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A	$0.6 \times 9.8h = 58.8$ $h = \frac{58.8}{0.6 \times 9.8} = 10 \text{ m}$ $M1$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A

1(a)	$\frac{1}{2} \times 35 \times v^2 = 35 \times 9.8 \times 10$ $v = 14 \text{ (ms}^{-1}\text{)}$	M1 A1 A1	3	Energy method
(b)	$v = 14 \text{ (ms}^{-1}\text{)}$ Air resistance or friction	B1	1	
(c)	Energy lost = $35 \times 9.8 \times 10 - \frac{1}{2} \times 35 \times 12^{2}$ (= 910) Work done: $F \times 20$ (= 910) 20F = 910 $F = 45$	m1	4	Difference attempted \pm $F > 0$
·		Total	8	

	Total		10	
	Box is a particle	E1	2	Deduct 1 mark for unacceptable third reason
(d)	No air resistance	E1	_	Or no resistance forces
	∴ Speed is 26.2 m s ⁻¹	A1	3	CAO; accept $\sqrt{688}$ or $4\sqrt{43}$; SC2 26.3
	$V^2 = 688$	A1		
(c)	$\frac{1}{2}mV^2 = 1720$	M1		
	= 1720 J	A1	3	AG; SC2 $5 \times 35.1 \times g = 1720$
	= Initial KE + Change in potential energy = $250 + 5 \times 30 \times g$	M1 A1ft		Could have sign errors
(b)	Using conservation of energy: KE when box hits ground			
	= 250 J	A1	2	
1(a)	Kinetic energy = $\frac{1}{2} \times 5 \times 10^2$	M1		Full method