
Mechanics 2 Work, Energy, Power

1 A stone, of mass 0.4 kg, is thrown vertically upwards with a speed of 8 m s^{-1} from a point at a height of 6 metres above ground level.

(a)	(a) Calculate the initial kinetic energy of the stone.		
(b)	(i)	Show that the kinetic energy of the stone when it hits the ground is 36. to three significant figures.	.3 J, correct (2 marks)
	(ii)	Hence find the speed at which the stone hits the ground.	(3 marks)
	(iii)	State one assumption that you have made.	(1 mark)

- 2 A ball of mass 0.6 kg is thrown vertically upwards from ground level with an initial speed of $14 \,\mathrm{m\,s^{-1}}$.
 - (a) Calculate the initial kinetic energy of the ball. (2 marks)
 - (b) Assuming that no resistance forces act on the ball, use an energy method to find the maximum height reached by the ball. (3 marks)
 - (c) An experiment is conducted to confirm the maximum height for the ball calculated in part (b). In this experiment the ball rises to a height of only 8 metres.
 - (i) Find the work done against the air resistance force that acts on the ball as it moves. (3 marks)
 - (ii) Assuming that the air resistance force is constant, find its magnitude. (2 marks)
 - (d) Explain why it is **not** realistic to model the air resistance as a constant force. (1 mark)

1 A child, of mass 35 kg, slides down a slide in a water park. The child, starting from rest, slides from the point A to the point B, which is 10 metres vertically below the level of A, as shown in the diagram.

(a) In a simple model, all resistance forces are ignored.

Use an energy method to find the speed of the child at B. (3 marks)

- (b) State one resistance force that has been ignored in answering part (a). (1 mark)
- (c) In fact, when the child slides down the slide, she reaches B with a speed of 12 m s^{-1} .

Given that the slide is 20 metres long and the sum of the resistance forces has a constant magnitude of F newtons, use an energy method to find the value of F. (4 marks)

1 A hot air balloon moves vertically upwards with a constant velocity. When the balloon is at a height of 30 metres above ground level, a box of mass 5 kg is released from the balloon.

After the box is released, it initially moves vertically upwards with speed $10 \,\mathrm{m\,s^{-1}}$.

(a)	Find the initial kinetic energy of the box.	(2 marks)
(b)	Show that the kinetic energy of the box when it hits the ground is 1720 J.	(3 marks)
(c)	Hence find the speed of the box when it hits the ground.	(3 marks)
(d)	State two modelling assumptions which you have made.	(2 marks)