Statistics 1 Normal Distribution Answers

7 (a)
 Weight, X - N(406, 4.2²)
 Standardising (399.5, 400 or 400.5) with 406 and
$$(\sqrt{4.2}, 4.2 \text{ or } 4.2^2)$$
 and/or (406 - x)

 (i)
 $P(X < 400) = P\left(Z < \frac{400 - 406}{4.2}\right)$
 M1
 M1
 406 and $(\sqrt{4.2}, 4.2 \text{ or } 4.2^2)$ and/or (406 - x)

 $= P(Z < -1.428 \text{ to } 1.43)$
 m1
 $0.075 \text{ to } 0.077$
 A1
 3
 AWRT
 0.07636

 (ii)
 $P(402.5 < X < 407.5) = P(X < 402.5) =$
 M1
 M1
 AWRT
 0.07636
 $P(Z < 0.36) - P(Z < -0.83)$
 B2.1
 AWRT
 0.07636
 Difference OE

 $P(Z < 0.36) - P(Z < -0.83)$
 B2.1
 AWRT
 0.43731
 $0.975 \Rightarrow z = 1.96$
 M1
 Accept explanation in words

 $P(Y < 310) = P\left(Z < \frac{310 - \mu}{\sigma}\right)$
 M1
 Accept in words

 or
 $310 = \mu + 1.96\sigma$
 result
 m1
 3

 or
 $310 - \mu = 1.96\sigma$
 result
 3
 3
 G

 (ii)
 $0.86 \Rightarrow z = 1.08$
 B1
 3
 AWRT
 1.0803
 $310 - \mu = 1.96\sigma$
 $2.5 = 0.88\sigma$
 M1
 Attempt at solving 2 equations each of form $x - \mu = z\sigma$
 $\sigma = 2.84 \text{ to } 2.842$
 A1
 A
 AWFW
 2.841

 <

	Height, $X \sim N(185, 10^2)$			
(i)	$P(X < 200) = P\left(Z < \frac{200 - 185}{10}\right)$	M1		standardising (199.5, 200 or 200.5) with
				185 and $(\sqrt{10}, 10 \text{ or } 10^2)$ and/or $(185 - x)$
	= P(Z < 1.5)	A1		CAO; ignore sign
	$= \Phi(1.5) = 0.933$	A1	3	AWRT (0.93319)
	(175-185)			
(11)	$P(X > 175) = P\left(Z > \frac{175 - 185}{10}\right)$	M1		standardising (174.5, 175 or 175.5) with 185 and ($\sqrt{10}$, 10 or 10 ²) and/or (185 - x)
				$185 \text{ and } (\sqrt{10}, 10 \text{ or } 10) \text{ and or } (185 - x)$
	= P(Z > -1) = P(Z < 1)	m1		area change
	= 0.841	A1	3	AWRT (0.84134)
(iii)	P(175 < X < 200) = (i) - [1 - (ii)]	M1		or equivalent
	= 0.93319 - [1 - 0.84134]		2	
	= 0.774 to 0.775	A1√	2	AWFW (0.77453) \checkmark on (i) and (ii) providing > 0
				v on (i) and (i) providing v o
(b)	Mean of $\overline{X} = 185$	B1		CAO; may be implied by use in standardising
	-10^{2}			
	Variance of $\overline{X} = \frac{10^2}{4} = 25$	B1		CAO; or equivalent
	$P(\overline{X} > 190) = P\left(Z > \frac{190 - 185}{5}\right)$	M1		standardising 190 with 185 and 5 and/or
	$P(X > 190) - P(Z > \frac{1}{5})$			(185 – 190)
	$= P(Z > 1) = 1 - \Phi(1)$			ANDT (0.150(C)
	= 0.159	A1√	4	AWRT (0.15866) √ on (a)(ii) if used
		Total	12	
				·

6(a)(i)	$P(X < 45) = P\left(Z < \frac{45 - 37}{8}\right)$ = $P(Z < 1)$	M1 A1		Standardising (44.5, 45 or 45.5) with 37 and ($\sqrt{8}$, 8 or 8 ²) and/or (37 - x) CAO; ignore sign
	= 0.841	A1	3	AWRT (0.84134)
(ii)	P(30 < X < 45) = (i) - P(X < 30) $= (i) - P(Z < -0.875)$	M1		Used; OE
	= (i) - [1 - (0.80785 to 0.81057)]	m1		Area change
	= 0.648 to 0.652	A1	3	AWFW (0.65056)
(b)	$0.12 \Rightarrow z = 1.17 \text{ to } 1.18$	B1		AWFW; ignore sign (1.1750)
	$z = \frac{45 - 40}{\sigma}$	M1		Standardising 45 with 40 and σ
	= 1.175	m1		Equating z-term to z-value but not using 0.12, 0.88 or $ 1-z $
	σ = 4.23 to 4.28	A1	4	AWFW

	Route A: $P(X > 45) = 1 - (a)(i)$ Route B: $P(Y > 45) = 0.12$	B1 ↑Dep↑		OE; must use 45
	so Monica should use Route B (smaller prob)	B1√	2	on (a)(i); allow Route Y
(d)	Mean of $\overline{W} = 18$	В1		CAO; can be implied by use in standardising
	Variance of $\overline{W} = \frac{12^2}{36} = 4$	B1		CAO; OE
	$\mathbb{P}\left(\overline{W} > 20\right) = \mathbb{P}\left(Z > \frac{20 - 18}{2}\right)$	M1		Standardising 20 with 18 and 2 and/or (18 – 20)
	= P(Z > 1) = 0.159	A1√	4	AWRT (0.15866); \checkmark on (a)(i) if used
(e)	In part (d)	B1	1	CAO; OE
	Total		17	
	Time, $X \sim N(48, 20^2)$ $P(X < 60) = P(Z < \frac{60 - 48}{3}) =$	M1		
		1		
	Time, $X \sim N(48, 20^{\circ})$ P($X < 60$) = P $\left(Z < \frac{60 - 48}{20}\right)$ =	M1		Standardising (59.5, 60 or 60.5) with 4 and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$
(i)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ $P(Z < 0.6) = 0.725 \text{ to } 0.73$	M1 A1	2	
(i)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$		2	and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$
(i)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ $P(Z < 0.6) = 0.725 \text{ to } 0.73$ $P(30 < X < 60) =$ $P(X < 60) - P(X < 30) =$ $(i) - P(X < 30) =$	A1	2	and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$ AWFW (0.7257 Difference or equivalent Standardising other than 60 and 30
(i)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ $P(Z < 0.6) = 0.725 \text{ to } 0.73$ $P(30 < X < 60) =$ $P(X < 60) - P(X < 30) =$ $(i) - P(X < 30) =$ $(i) - P(Z < -0.9) =$ $(i) - \{1 - P(Z < +0.9)\} =$	A1 M1	2	and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$ AWFW (0.7257) Difference or equivalent Standardising other than 60 and 30 \Rightarrow max of M1 m1 A Area change
(i)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ $P(Z < 0.6) = 0.725 \text{ to } 0.73$ $P(30 < X < 60) =$ $P(X < 60) - P(X < 30) =$ $(i) - P(X < 30) =$ $(i) - P(Z < -0.9) =$ $(i) - \{1 - P(Z < +0.9)\} =$ $0.72575 - \{1 - 0.81594\} =$	A1 M1 m1		and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$ AWFW (0.7257 Difference or equivalent Standardising other than 60 and 30 \Rightarrow max of M1 m1 A Area change
(i) (ii)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ $P(Z < 0.6) = 0.725 \text{ to } 0.73$ $P(30 < X < 60) =$ $P(X < 60) - P(X < 30) =$ $(i) - P(X < 30) =$ $(i) - P(Z < -0.9) =$ $(i) - \{1 - P(Z < +0.9)\} =$ $0.72575 - \{1 - 0.81594\} =$ $0.54 \text{ to } 0.542$	A1 M1 m1 A1		and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$ AWFW (0.7257 Difference or equivalent Standardising other than 60 and 30 \Rightarrow max of M1 m1 A Area change AWFW (0.5416
(i) (ii)	$P(X < 60) = P\left(Z < \frac{60 - 48}{20}\right) =$ $P(Z < 0.6) = 0.725 \text{ to } 0.73$ $P(30 < X < 60) =$ $P(X < 60) - P(X < 30) =$ $(i) - P(X < 30) =$ $(i) - P(Z < -0.9) =$ $(i) - \{1 - P(Z < +0.9)\} =$ $0.72575 - \{1 - 0.81594\} =$ $0.54 \text{ to } 0.542$ $0.9 \Rightarrow z = 1.28 \text{ to } 1.282$	A1 M1 m1 A1 B1		and $(\sqrt{20}, 20 \text{ or } 20^2)$ and/or $(48 - x)$ AWFW (0.7257) Difference or equivalent Standardising other than 60 and 30 \Rightarrow max of M1 m1 A Area change AWFW (0.5416) AWFW (1.2816)

	Total		16	
	0.238 to 0.24	A1	4	AWFW (1 - 0.76115)
	$P(Z > 0.71) \; = \; 1 - P(Z < 0.71) =$	m1		Area change
	$P(\overline{Y} > 40) = P\left(Z > \frac{40 - 37}{25/\sqrt{35}}\right) =$	M1		Standardising 40 with 37 and $25/\sqrt{35}$ and/or $(37 - 40)$
(iii)	Variance of $\overline{Y} = \frac{25^2}{35}$	B1		OE; stated or used
(ii)	Central Limit Theorem or $n \text{ large } / > 30$	B1	1	
	$< 0 \Rightarrow$ likely negative times	B1	2	for (likely) negative times
(i)	Use of $\mu - (2 \text{ or } 3) \times \sigma = 37 - (50 \text{ or } 75)$	M1		Or equivalent justification
(b)	Time, $Y \sim N(37, 25^2)$			