Statistics 1 Numerical Measures Answers

3(a)	$Mean = \frac{286.5}{50} = 5.73$	В1		CAO
	Standard deviation = $\sqrt{\frac{45.16}{49 \text{ or } 50}}$ =			
	0.95 to 0.961	В1	2	AWFW
(b)	$99\% \Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW 2.5758
	CI for μ is $\overline{x} \pm z \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		Use of Must have $(\div \sqrt{n})$ with $n \ge 1$
	Thus $5.73 \pm 2.5758 \times \frac{(0.95 \text{ to } 0.961)}{\sqrt{50}}$	A1√		$\sqrt{\ }$ on z and $s^2 > 0$ but not on \overline{x} Accept only 50 or 49 for n
	5.73 ± (0.34 to 0.36)	1		Dependent
	5.37 to 5.39, 6.07 to 6.09)	A1	4	AWFW
(c)	CI excludes both values of 5 and 6½ so Neither claim appears valid	B1√ ↑ B1√		√ on (b); OE Dependent √ on (b); OE
	or			
	CI excludes 5 so claim not valid	(B1√)		√ on (b); OE
	CI excludes 6½ so claim not valid	(B1√)	2	√ on (b); OE
	Total		8	

4(a)					
	Mean $(\bar{x}) = 80.2$ to 80.3	B2		AWFW	80.25
	Standard Deviation $(s_n, s_{n-1}) = 30.9$ to 31.2 MPs (x) : 25, 35, 50, 70, 90, 110, 135, 165	B2 (B1)		AWFW At least 4 corre	30.97882 or 31.13489
	$Mean (\overline{x}) = \frac{\Sigma fx}{100}$	(M1)	4	Use of	

(b)(i)	Mean, $\mu = np = 15 \times 0.4 = 6$	B1		CAO
	Variance, $\sigma^2 = np(1-p) = 6 \times 0.6 = 3.6$	M1		use of $\sigma^2 = np(1-p)$
	Standard deviation = $\sqrt{3.6}$ = 1.89 to 1.9	A1	3	AWFW; or equivalent
(ii)	Mean, $\overline{x} = 6$	B1		CAO ($\Sigma x = 60$) CSO if evidence of $np(1-p)$ or 1.9
	Standard deviation, s or $\sigma = 2.82$ to 2.99	B1	2	AWFW; or equivalent. $(\Sigma x^2 = 440)$
(iii)	Means are same/equal	B1√		$$ on 2 means; accept $\frac{6}{15}$ = 0.4 if not contradicted by \overline{x} in (ii)
	Standard deviations are different	B1 dep		dependent on 2 correct SDs
	Reason to doubt validity of Kirk's claim	B1 dep	3	dependent on 2 correct SDs
				·
1(a)	Mean $(\bar{x}) = 39.3 \text{ to } 39.4$	B1		AWFW (39.35)
	Standard Deviation (s_n, s_{n-1}) = 12.3 to 12.7	B2	3	AWFW (12.358 or 12.679)
	If neither correct but working shown, then			$\sum x = 787 \sum x^2 = 34023$
	$Mean\left(\overline{x}\right) = \frac{\sum x}{20}$	(M1)		Used
(b)	Median = 42	B 2		CAO
	Median = 41.5 or 39 or 40	(B1)		CAO
	Interquartile Range = $55 - 31 = 24$	B2	4	CAO; allow B1 for identification of 31 and 55; B0 if method shown is incorrect
	Interquartile Range = 21 to 27	(B1)		AWFW
(c)(i)	Mode: eg Does not exist If exists, must be > 60 or 58	B1		OE
	All / too many different values Sparse data	ы		OL
(ii)	Range: eg			
	Maximum value is unknown / > 60 or 58	B1 Total	2 9	OE; accept 'slowest' but not 'smallest'
I		Total	9	

4(a)(i)	Mode = 2	B1		CAO
	Range = 15	B1	2	CAO
(ii)	CF: 4 17 41 58 73 84 89 95 x: 0 1 2 3 4 9 14 15			
	$Median (48^{th}) = 3$	В2		CAO; B0 if shown method is incorrect
	Interquartile Range $(72^{\text{nd}} - 24^{\text{th}})$ = 4 - 2 = 2	B2		CAO Allow B1 for identification of 4 and 2 B0 if shown method is incorrect
	If neither correct but CF attempted and matched correctly with ≥ 5 x-values	(M1) (A1)	4	Allow for median = $2 + \frac{x}{17}$
(iii)	$Mean(\overline{x}) = 4.2$	B2		CAO $\sum fx = 399$
	Standard Deviation (s_n, s_{n-1}) = 3.88 to 3.91	B2		$\sum fx^2 = 3111$ AWFW (3.887 or 3.907)
	If neither correct but mid-points of 7 and 12 seen	(B1)		
	and use of mean $(\overline{x}) = \frac{\sum fx}{95}$	(M1)	4	Allow for $4.1 \le \overline{x} \le 4.3$
(b)(i)	Unknown values (16) have no effect on median and IQR or median and IQR are exact values but \overline{x} and s are estimates	В1	1	
(ii)	Use all available data or Enable further analyses	B1	1	
	Total		12	