This file contains;
1.This slide
2.One slide of questions based on using Pythagoras
3.One slide of questions based on using standard trigonometry
4.One slide of questions based on using the cosine rule
5.One slide of questions based on using the sine rule 6.One slide of questions based on using the sine rule for area 7.One slide containing answers

Slides aren't titled to make students think further.

Is this triangle drawn accurately?

What is the maximum length umbrella that can fit into a suitcase of these dimensions?
$66 \mathrm{~cm} \times 44 \mathrm{~cm} \times 23 \mathrm{~cm}$

$A B C D$ is a parallelogram.

$$
A X=4 \mathrm{~cm} \quad B C=8 \mathrm{~cm} \angle B A D=48^{\circ}
$$

Calculate the length of the longer diagonal.

The graph of $y=\sin x$ is shown below.
What are the coordinates of a, b, c and d ?

Drawn accurately?

In the triangle $P Q R$,
$\mathrm{PQ}=4 \mathrm{~cm} \quad \mathrm{QR}=5 \mathrm{~cm} \angle \mathrm{PQR}=225^{\circ}$
Calculate the length of $P R$.

Give both possible answers

Answers

Pythagoras (the one with the suitcase)
1.No, $10^{2}+24^{2} \neq 28^{2} \therefore$ non RA.
2.82 .59 cm
3. $(5 \sqrt{ } 7) / 2 \approx 6.61$
4.82 .59 cm (same answer as question 2)

Cosine Rule (one with the worded question)
1.23 .86 cm
$2.180^{\circ} \quad \therefore$ not a triangle (check the lengths)
3.21 .07 cm
$4 .(41+20 \sqrt{ } 2)^{1 / 2} \approx 8.32 \mathrm{~cm}$

Standard Trig (the one with the sin graph)

1. $(20 \sqrt{ } 3) / 3 \approx 11.55$
2.45°
3.12 .27 cm
2. $(90,1),(180,0),(270,-1),(540,0)$

Sine Rule

$1.5 \sqrt{ } 6+5 \sqrt{ } 2 \approx 19.31 \mathrm{~cm}$
2.90°
3.19 .69 cm
4.129.13 ${ }^{\circ}$

Sine Rule for Area (one about areas)
1.60°
2. $(75 \sqrt{ } 6+75 \sqrt{ } 2) / 2 \approx 144.89 \mathrm{~cm}^{2}$
3.20 .615 cm and 40.31 cm
$4.128 \mathrm{~cm}^{2}$

