A	P	Arithmetic Progression	add common difference	a + (n-1)d
G	ïΡ	Geometric Progression	multiply common ratio	ar^{n-1}

APs

nth term

$$u_n = a + (n-1)d$$
 a = 1st term, d = difference

10

sum to nth term

$$S_n = \frac{1}{2}n[2a + (n-1)d]$$
 $S_n = \frac{n}{2}(a+l)$

$$\sum (u_n + v_n) = \sum u_n + \sum v_n$$

 $\sum (ku_n) = k \sum u_n \quad \text{(constant multipliers go outside)}$

GPs

nth term

$$u_n = ar^{n-1}$$
 a = 1st term, r = ratio

sum to nth term

$$S_n = \frac{a(1-r^n)}{1-r}$$
 $S_n = a\left(\frac{r^n - 1}{r-1}\right)$

If -1 < r < 1, then

$$S_{\infty} = \frac{a}{1-r}$$

$$\sum_{1}^{n} r = \frac{n(n+1)}{2}$$

$$\sum_{1}^{n} r^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{1}^{n} r^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum (u_{n} + v_{n}) = \sum u_{n} + \sum v_{n}$$

$$\sum (ku_{n}) = k \sum u_{n} \quad \text{(constant multipliers go outside)}$$