APs \& GPs

APs

$\mathrm{n}^{\text {th }}$ term

$$
u_{n}=a+(n-1) d \quad a=1^{\text {st }} \text { term, } \mathrm{d}=\text { difference }
$$

sum to $\mathrm{n}^{\text {th }}$ term

$$
\begin{gathered}
S_{n}=\frac{1}{2} n[2 a+(n-1) d] \quad S_{n}=\frac{n}{2}(a+l) \\
\sum\left(u_{n}+v_{n}\right)=\sum u_{n}+\sum v_{n} \\
\sum\left(k u_{n}\right)=k \sum u_{n} \quad \text { (constant multipliers go outside) }
\end{gathered}
$$

GPs

$\mathrm{n}^{\text {th }}$ term

$$
u_{n}=a r^{n-1} \quad \mathrm{a}=1^{\text {st }} \text { term, } \mathrm{r}=\text { ratio }
$$

sum to $\mathrm{n}^{\text {th }}$ term

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad S_{n}=a\left(\frac{r^{n}-1}{r-1}\right)
$$

If $-1<r<1$, then

$$
S_{\infty}=\frac{a}{1-r}
$$

$$
\begin{gathered}
\sum_{1}^{n} r=\frac{n(n+1)}{2} \\
\sum_{1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6} \\
\sum_{1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4} \\
\sum\left(u_{n}+v_{n}\right)=\sum u_{n}+\sum v_{n} \\
\sum\left(k u_{n}\right)=k \sum u_{n} \quad \text { (constant multipliers go outside) }
\end{gathered}
$$

