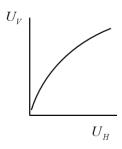
Essential Notes on AQA Mechanics 1

Newtons Laws of Motion

- 1. Every particle continues in a state of uniform motion unless acted upon by an external force.
- 2. The net force is equal to the rate of change of momentum. F=ma
- 3. Every action has an equal and opposite reaction

Suvat

$$v = u + at$$
 (no s)


$$s = ut + \frac{1}{2}at^2 \qquad (no u)$$

$$s = vt - \frac{1}{2}at^2 \qquad (no v)$$

$$s = \frac{1}{2}(u+v)t \qquad (\text{no } a)$$

$$v^2 = u^2 + 2as \tag{no } t$$

Projectiles

 $U_{\scriptscriptstyle H}$ acts constantly $U_{\scriptscriptstyle V}$ subject to g ms⁻² Care required with stating which is positive vertical direction.

Friction

$$F = \mu R$$
 where $0 < \mu < 1$

Equilibrium

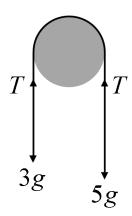
Result force equals zero

Principal of Conservation of Momentum

The total momentum in a system before an impact is equal to the total momentum in the system after the impact. $m_1v_1=m_2v_2$

Common Modelling Assumptions

Ignore air resistance Force of gravity acts constantly


Inextensible	\Rightarrow	no stretching
Thin	\Rightarrow	no diameter or thickness
Light	\Rightarrow	no mass
Rigid	\Rightarrow	no bending
Smooth	\Rightarrow	no friction
Particle	\Rightarrow	no size

Vectors

$$\frac{r}{(r\cos\theta)i}(r\sin\theta)j$$

$$r = ai + bj$$
 $|r| = \sqrt{a^2 + b^2}$ $\tan \theta = \frac{b}{a}$

Pulleys and Tension

