Coordinate Geometry

Distance between two points:

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint of a straight line (or two coordinates):

$$
\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)
$$

Gradient of a straight line:

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Forms of equation of a straight line:

$$
\begin{gathered}
y=m x+c \text { - the standard equation, shows gradient and } y \text {-intercept } \\
y-y_{1}=m\left(x-x_{1}\right) \text { - useful for finding } \mathrm{c} \text { value } \\
a x+b y+c=0 \text { - more elegant than involving fractions }
\end{gathered}
$$

Perpendicular lines:

$$
\begin{gathered}
m_{1} \times m_{2}=-1 \\
\text { (the negative reciprocal rule) }
\end{gathered}
$$

Equation of a circle:

$$
\begin{gathered}
\quad(x-a)^{2}+(y-b)^{2}=r^{2} \\
\text { where }(a, b)=\text { centre and } r=\text { radius }
\end{gathered}
$$

Angle between line and horizontal:

$$
\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)=\tan ^{-1}(\text { gradient })
$$

