A Harder Differential Equations Question

(Core 4 Page 237 Exercise 11F Qu 3)

Mould is spreading through a piece of cheese on mass 1 kg in such a way that at a time t days, x kg of the cheese has become mouldy where...

$$
\frac{d x}{d t}=2 x(1-x)
$$

Initially 0.01 kg of the cheese is mouldy.
Show that...

$$
x=\frac{e^{2 t}}{\left(99+e^{2 t}\right)}
$$

And calculate after how long 0.99 kg of the cheese will be mouldy, giving your answer to the nearest hour.

$$
\begin{array}{cc}
\frac{d x}{x(1-x)}=2 d t & t=0, x=0.01 \Rightarrow \\
\frac{1}{x(1-x)}=\frac{A}{x}+\frac{B}{1-x} & A=\frac{0.01}{0.99}=\frac{1}{99} \\
1=A(1-x)+B x \\
x=1 \Rightarrow B=1 & \frac{x}{(1-x)}=\frac{e^{2 t}}{99} \\
x=0 \Rightarrow A=1 & 99 x=e^{2 t}(1-x) \\
\frac{1}{x(1-x)}=\frac{1}{x}+\frac{1}{(1-x)} & 99 x=e^{2 t}-x e^{2 t} \\
\int \frac{d x}{x(1-x)}=\int \frac{1}{x}+\frac{1}{1-x} d x=2 t+c & 99 x+x e^{2 t}=e^{2 t} \\
\ln x-\ln (1-x)=2 t+c & x\left(99+e^{2 t}\right)=e^{2 t} \\
\ln \frac{x}{(1-x)}=2 t+c & x=\frac{e^{2 t}}{\left(99+e^{2 t}\right)} \\
\frac{x}{(1-x)}=e^{2 t+c} & \\
\frac{x}{(1-x)}=A e^{2 t} &
\end{array}
$$

