Mappings \& Functions

$$
y=3 x+1 \quad f(x)=3 x+1 \quad x \rightarrow 3 x+1
$$

Domain
Range or Co-Domain

Starting value
Finishing value

Types of Mappings

Type	Example	Proof
One to one	$\mathrm{f}(\mathrm{x})=3 \mathrm{x}+1$	$\mathrm{f}(1)=4, \mathrm{f}(-1)=-2$ $($ Not the same!)
Many to one	$\mathrm{f}(\mathrm{x})=\operatorname{sinx}$	$\mathrm{f}(30)=0.5, \mathrm{f}(150)=0.5$
\ldots		

The following is mapping but is not a function...

One to many	$\mathrm{f}(\mathrm{x})=\sin ^{-1} \mathrm{x}$	$\mathrm{f}(0.5)=30, \mathrm{f}(0.5)=150$

To clarify...

Type	Mapping	Function
One to one	Yes	Yes
Many to one	Yes	Yes
Many to many	Yes	Yes
One to many	Yes	No

The difference between inverse-sin and arc-sin etc.

Name	Function	Domain
Inverse-sin	$\sin ^{-1} x$	$-\infty \leq x \leq \infty$
Arc-sin	$\sin ^{-1} x$	$-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

- To change a 'many to one' function to a 'one to one' function we restrict the domain:

$$
\begin{array}{cc}
\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} & \mathrm{x} \geq 0 \\
\mathrm{f}(\mathrm{x})=\sin \mathrm{x} & -90 \leq \mathrm{x} \leq+90 \\
\mathrm{f}(\mathrm{x})=\cos \mathrm{x} & 0 \leq \mathrm{x} \leq 180 \\
\mathrm{f}(\mathrm{x})=\tan \mathrm{x} & -90 \leq \mathrm{x} \leq+90
\end{array}
$$

Composite Functions

Given:

$$
f(x)=x+3 \quad \text { and } \quad g(x)=x^{2}
$$

Then:

$\mathrm{gf}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=(x+3)^{2}$	$\mathrm{fg}(\mathrm{x})=\mathrm{x}^{2}+3$
$\mathrm{x} \rightarrow \mathrm{f}(\mathrm{x}) \rightarrow \mathrm{g}(\mathrm{f}(\mathrm{x}))$	$\mathrm{x} \rightarrow \mathrm{g}(\mathrm{x}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{x})$

range of $1^{\text {st }}$ function $=$ domain of $2^{\text {nd }}$ function
\Rightarrow domain of $1^{\text {st }}$ function restricted by range of $2^{\text {nd }}$ function
Eg:

$$
\begin{gathered}
f(x)=x+3, x \in R \quad g(x)=\sin ^{-1} x,-1 \leq x \leq 1 \\
\text { Domain of } g=\text { range of } f \Rightarrow-4 \leq x \leq-2
\end{gathered}
$$

Inverse functions

- Only exist for one to one functions

Eg:

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{x}+5 \Leftrightarrow \mathrm{f}^{-1}(\mathrm{x})=\mathrm{x}-5 \\
\mathrm{f}(\mathrm{x})=3 \mathrm{x}+2 \Leftrightarrow \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-2}{3} \\
\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}+1 \Leftrightarrow \mathrm{f}^{-1}(\mathrm{x})=(\mathrm{x}-1)^{2}
\end{gathered}
$$

And:

$$
\mathrm{ff}^{-1}(\mathrm{x}) \equiv \mathrm{x}
$$

- The range of f is the domain of f^{-1}.
- Inverse functions are reflections of the original functions in the line $y=x$.
- Specific values where $\mathrm{f}=\mathrm{f}^{-1}$ will always occur on the line $\mathrm{y}=\mathrm{x}$. Therefore, to find these points solve $\mathrm{f}(x)=x$.

For a function to be a 'self inverse function' then:

$$
\mathrm{f}=\mathrm{f}^{-1}
$$

Eg:

$$
\begin{gathered}
f(x)=\frac{4}{x} \Leftrightarrow f^{-1}(x)=\frac{4}{x} \\
f(x)=5-x \Leftrightarrow f^{-1}(x)=5-x
\end{gathered}
$$

- Self inverse functions are symmetrical about the line $y=x$.

