Mappings & Functions

y = 3x + 1	f(x) = 3x + 1	$x \rightarrow 3x+1$
Domain	Starting value	``x″
Range or Co-Domain	Finishing value	"f(x) " or " y "

Types of Mappings

Туре	Example	Proof
One to one	f(x) = 3x + 1	f(1) = 4, $f(-1) = -2(Not the same!)$
Many to one	f(x) = sinx	f(30) = 0.5, $f(150) = 0.5$
Many to many	$\frac{x^2}{a} + \frac{y^2}{b} = r^2$	$y = \pm \sqrt{b\left(r^2 - \frac{x^2}{a}\right)}$

The following is mapping but is not a function...

One to many	$f(x) = \sin^{-1}x$	f(0.5) = 30, $f(0.5) = 150$
		•••

To clarify...

Туре	Mapping	Function
One to one	Yes	Yes
Many to one	Yes	Yes
Many to many	Yes	Yes
One to many	Yes	No

The difference between inverse-sin and arc-sin etc.

Name	Function	Domain
Inverse-sin	$sin^{-1}x$	$-\infty \le x \le \infty$
Arc-sin	sin ⁻¹ x	$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

• To change a 'many to one' function to a 'one to one' function we restrict the domain:

$\mathbf{f}(\mathbf{x}) = x^2$	$x \ge 0$
f(x) = sinx	$-90 \le x \le +90$
f(x) = cosx	$0 \le x \le 180$
f(x) = tanx	$-90 \le x \le +90$

Composite Functions

Given:

f(x) = x+3 and $g(x) = x^2$

Then:

$gf(x) = g(f(x)) = (x+3)^2$	$fg(x) = x^2 + 3$
$x \rightarrow f(x) \rightarrow g(f(x))$	$\mathbf{x} \to \mathbf{g}(\mathbf{x}) \to \mathbf{f}(\mathbf{g}(\mathbf{x})$

range of 1^{st} function = domain of 2^{nd} function \Rightarrow domain of 1^{st} function restricted by range of 2^{nd} function

Eg:

f(x) = x+3, $x \in R$ $g(x) = \sin^{-1}x$, $-1 \le x \le 1$

Domain of $g = range of f \Rightarrow -4 \le x \le -2$

Inverse functions

• Only exist for one to one functions

Eg:

$$f(x) = x+5 \iff f^{-1}(x) = x-5$$
$$f(x) = 3x+2 \iff f^{-1}(x) = \frac{x-2}{3}$$
$$f(x) = \sqrt{x}+1 \iff f^{-1}(x) = (x-1)^2$$

And:

$$\mathrm{ff}^{-1}(\mathrm{x}) \equiv \mathrm{x}$$

- The range of ${\rm f}~$ is the domain of ${\rm f}^{-1}.$
- Inverse functions are reflections of the original functions in the line y = x.
- Specific values where $f = f^{-1}$ will always occur on the line y = x. Therefore, to find these points solve f(x) = x.

For a function to be a 'self inverse function' then:

$$f = f^{-1}$$

Eg:

$$f(x) = \frac{4}{x} \iff f^{-1}(x) = \frac{4}{x}$$
$$f(x) = 5 - x \iff f^{-1}(x) = 5 - x$$

• Self inverse functions are symmetrical about the line y = x.