Reporting on the Gender Pay Gap

A small company operates in a building with three floors. It employs people in three different roles; administrators, supervisors and managers and there are people in each category on each floor. Administrators typically earn the least whilst managers typically earn the most.

£ff Administrators < fff Supervisors < fff Managers</pre>

You job is to report on the average salaries on men and women in this company.

Task 1

Can you put some numbers (salaries, in thousands) in each box so that, in each category, the meanaverage of the men's salaries is *higher* than the women's BUT the overall mean-average of the men's salaries is *lower* than that of the women's. It seems counter-intuitive at first but is possible.

Use the first grid overleaf, mean-averages must be higher in each of the green boxes please.

Task 2

Using the same numbers as before. Can you arrange them so that, in each category, the meanaverage of the men's salaries is *lower* than the women's AND the overall mean-average of the men's salaries is also *lower* than the women's. Is this still possible if we said that each floor must have at least one administrator, one supervisor and one manager?

Use the second grid below, mean-averages must be higher in each of the green boxes please.

Stratified by job type

Role	Men		Women	
Administrators	Numbers:	Average:	Numbers:	Average:
Supervisors	Numbers:	Average:	Numbers:	Average:
Managers	Numbers:	Average:	Numbers:	Average:
Total	Numbers:	Average:	Numbers:	Average:

What strategies worked well here? Why is this possible?

Stratified by place of work in building

Role	Men		Women	
Floor 1	Numbers:	Average:	Numbers:	Average:
Floor 2	Numbers:	Average:	Numbers:	Average:
Floor 3	Numbers:	Average:	Numbers:	Average:
Total	Numbers:	Average:	Numbers:	Average:

What strategies worked well here? Why is this possible?

Task 3 and Task 4

Notice that in the graphic on page one, the article refers to median-average instead of meanaverage. This has the effect of smoothing out any exceptionally high salaries which would skew the mean-average. So, the task here is to repeat tasks 1 and 2 but using median-average figures instead. As before, this task is possible... but can you do it?!

More grids overleaf.

Stratified by job type - median-averages

Role	Men		Women	
Administrators	Numbers:	Average:	Numbers:	Average:
Supervisors	Numbers:	Average:	Numbers:	Average:
Managers	Numbers:	Average:	Numbers:	Average:
Total	Numbers:	Average:	Numbers:	Average:

What strategies worked well here? Why is this possible?

Stratified by place of work in building – median-averages

Role	Men		Women	
Floor 1	Numbers:	Average:	Numbers:	Average:
Floor 2	Numbers:	Average:	Numbers:	Average:
Floor 3	Numbers:	Average:	Numbers:	Average:
Total	Numbers:	Average:	Numbers:	Average:

What strategies worked well here? Why is this possible?