Harmonic Form

$$
\begin{aligned}
& a \sin x \pm b \cos x=R \sin (x \pm \alpha) \\
& a \cos x \pm b \sin x=R \cos (x \mp \alpha)
\end{aligned}
$$

Where

$$
\begin{gathered}
R=\sqrt{a^{2}+b^{2}} \\
R \cos \alpha=a \quad \text { and } \quad R \sin \alpha=b \\
\Rightarrow \cos \alpha=\frac{a}{R}, \sin \alpha=\frac{b}{R}, \tan \alpha=\frac{b}{a}
\end{gathered}
$$

Harmonic Form Teaching Activity

1. Draw $y=3 \sin x+2 \cos x$. Make observations.
2. Experiment with other versions of $y=a \sin x+b \cos x$ making further observations.
3. Realize that $y=3 \sin x+2 \cos x$ can be written in the form $y=R \sin (x+\alpha)$ and try to suggest reasons for these values ($R \approx 3.6, \alpha \approx 0.58$).
4. Do the algebra. Equating both expressions and using double angle formulae:

$$
\begin{gathered}
3 \sin x+2 \cos x=R \sin (x+\alpha) \\
3 \sin x+2 \cos x=R \sin x \cos \alpha+R \cos x \sin \alpha
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
3 \sin x=R \sin x \cos \alpha \Rightarrow 3=R \cos \alpha \Rightarrow \cos \alpha=\frac{3}{R} \\
2 \cos x=R \cos x \sin \alpha \Rightarrow 2=R \sin \alpha \Rightarrow \sin \alpha=\frac{2}{R} \\
R=\sqrt{3^{2}+2^{2}} \quad \text { and } \quad \tan \alpha=\frac{2}{3}
\end{gathered}
$$

5. Textbook or exam questions where students convert equations into harmonic form.
6. This question...

Rewrite $\sqrt{3} \cos x-\sin x$ in the form
a) $R \cos (x+\alpha)$
b) $R \sin (x-\alpha)$
c) Prove via graph transformations that your answers to part (a) and (b) are the same.

