### Lots of Proof Questions

# Algebraic Proof

| Prove algebraically that $n^3 + 3n - 1$ is odd for all positive integers <i>n</i> .                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| [4]                                                                                                                                     |
| N is an integer that is not divisible by 3. Prove that $N^2$ is of the form $3p + 1$ , where p is an integer.                           |
| [5]                                                                                                                                     |
| Prove that the sum of the squares of any two consecutive integers is of the form $4k + 1$ , where $k$ is an integer.                    |
| [4]                                                                                                                                     |
| By considering separately the case when <i>n</i> is odd and the case when <i>n</i> is even, prove that the following statement is true. |
| <i>n</i> is a positive integer $\Rightarrow$ <i>n</i> <sup>2</sup> + 1 is not a multiple of 4.                                          |
| [4]                                                                                                                                     |
| Prove that the sum of the squares of any three consecutive positive integers cannot be divided by 3.                                    |
| [2]                                                                                                                                     |
| Tom Cruise claims that " <i>n</i> is an <b>even</b> positive integer greater than $2 \Rightarrow 2^n - 1$ is <b>not</b> prime".         |
| Prove that Tom's claim is true.                                                                                                         |
| [4]                                                                                                                                     |

## **Counter example and Contradiction**

| Johnny claims that "If n is any positive integer, then $3^n + 2$ is a prime number." |     |
|--------------------------------------------------------------------------------------|-----|
|                                                                                      |     |
| Prove that Johnny's claim is incorrect.                                              |     |
|                                                                                      |     |
|                                                                                      | [3] |
|                                                                                      |     |
| Amber says that $x = 3 \Leftrightarrow x^2 = 9$ .                                    |     |
|                                                                                      |     |
| Explain why Amber's statement is incorrect and write a corrected version of Amber's  |     |
| statement.                                                                           |     |
|                                                                                      |     |
|                                                                                      | [2] |
|                                                                                      | r_1 |

Prove that the following statement is **not** true.

*m* is an odd number greater than  $1 \Rightarrow m^2 + 4$  is prime.

It is given that n is an integer. Prove by contradiction that  $n^2$  is even  $\Rightarrow n$  is even.

[5]

[2]

[5]

[1]

A student suggests that, for any prime number between 20 and 40, when its digits are squared and then added, the sum is an odd number.

For example, 23 has digits 2 and 3 which gives  $2^2 + 3^2 = 13$ , which is odd.

Show by counter example that this suggestion is false.

Prove by contradiction that  $\sqrt{7}$  is irrational.

### Exhaustion

Prove by exhaustion that if the sum of the digits of a 2-digit number is 5, then this 2-digit number is not a perfect square.

[3]

### Others



[2]