Maclaurin Series

The Maclaurin Series (expansion) is useful for approximating more complicated equations as polynomial equations.

The function and its derivatives must exist at $x=0$.
General Form

$$
f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

Some standard Maclaurin Expansions...

$f(x)$	Maclaurin Expansion	Valid for
e^{x}	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{r}}{r!}+\cdots$	All x
$\sin x$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\cdots$	All x
$\cos x$	$1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\cdots$	All x
$\ln (x+1)$	$x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{r+1} \frac{x^{r}}{r}+\cdots$	$-1<x \leq 1$
$(1+x)^{n}$		$-1<x<1$

Confirm these for yourself.
Find the first three non-zero terms of...

1. $\cos 2 x$
2. $\sin \frac{x}{2}$
3. $e^{-3 x}$
4. $(1+x)^{n}$

Find general term for each of these expansions State the range of values for which each of these expansions is valid.

