Maclaurin Series

The Maclaurin Series (expansion) is useful for approximating more complicated equations as polynomial equations.

The function and its derivatives must exist at x = 0.

General Form

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

Some standard Maclaurin Expansions...

f(x)	Maclaurin Expansion	Valid for
e ^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^r}{r!} + \dots$	All x
sinx	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$	All x
cosx	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots$	All <i>x</i>
ln(x+1)	$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots$	$-1 < x \leq 1$
$(1+x)^n$		-1 < x < 1

Confirm these for yourself. Find the first three non-zero terms of...

1. $\cos 2x$ 2. $\sin \frac{x}{2}$ 3. e^{-3x} 4. $(1+x)^n$

Find general term for each of these expansions

State the range of values for which each of these expansions is valid.